RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zh. Èksper. Teoret. Fiz., 2009, Volume 90, Issue 11, Pages 793–799 (Mi jetpl596)  

This article is cited in 6 scientific papers (total in 6 papers)

GRAVITY, ASTROPHYSICS

$\hbar$ as parameter of Minkowski metric in effective theory

G. E. Volovikab

a Low Temperature Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland
b Landau Institute for Theoretical Physics RAS

Abstract: With the proper choice of the dimensionality of the metric components and matter field variables, the action for all fields becomes dimensionless. Such quantities as the vacuum speed of light $c$, the Planck constant $\hbar$, the electric charge $e$, the particle mass $m$, the Newton constant $G$ never enter equations written in the covariant form, i.e., via the metric $g^{\mu\nu}$. The speed of light $c$ and the Planck constant $\hbar$ are parameters of a particular two-parametric family of solutions of general relativity equations describing the flat isotropic Minkowski vacuum in effective theory emerging at low energy: $g^{\mu\nu}_\mathrm{Minkowski}=\mathrm{diag}(-\hbar^2,(\hbar c)^2,(\hbar c)^2,(\hbar c)^2)$. They parametrize the equilibrium quantum vacuum state. The physical quantities which enter the covariant equations are dimensionless quantities and quantities which have dimension of rest energy $M$ or its power. Dimensionless quantities include the running coupling ‘constants’ $\alpha_i$; the geometric $\theta$-parameters which enter topological terms in action; and geometric charges coming from the group theory, such as angular momentum quantum number $j$, weak charge, electric charge $q$, hypercharge, baryonic and leptonic charges, number of atoms $N$, etc. Dimensionful parameters are mass matrices with dimension of $M$; gravitational coupling $K$ with $[K]=[M]^2$; cosmological constant with dimension $M^4$; etc. In effective theory, the interval $s$ has the dimension of $1/M$; it characterizes dynamics of particles in quantum vacuum rather than space-time geometry. The action is dimensionless reflecting equivalence between action and the phase of a wave function in quantum mechanics. We discuss the effective action, and the measured physical quantities including parameters of metrology triangle.

Full text: PDF file (1162 kB)
References: PDF file   HTML file

English version:
Journal of Experimental and Theoretical Physics Letters, 2009, 90:11, 697–704

Bibliographic databases:

PACS: 03.65.-w, 04.20.-q, 05.20.Jr
Received: 02.11.2009
Revised: 09.11.2009
Language:

Citation: G. E. Volovik, “$\hbar$ as parameter of Minkowski metric in effective theory”, Pis'ma v Zh. Èksper. Teoret. Fiz., 90:11 (2009), 793–799; JETP Letters, 90:11 (2009), 697–704

Citation in format AMSBIB
\Bibitem{Vol09}
\by G.~E.~Volovik
\paper $\hbar$ as parameter of Minkowski metric in effective theory
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2009
\vol 90
\issue 11
\pages 793--799
\mathnet{http://mi.mathnet.ru/jetpl596}
\transl
\jour JETP Letters
\yr 2009
\vol 90
\issue 11
\pages 697--704
\crossref{https://doi.org/10.1134/S0021364009230027}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000275104100002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949418957}


Linking options:
  • http://mi.mathnet.ru/eng/jetpl596
  • http://mi.mathnet.ru/eng/jetpl/v90/i11/p793

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Visser M., Molina-Paris C., New Journal of Physics, 12 (2010), 095014  crossref  adsnasa  isi  scopus
    2. Uzan J.-Ph., Living Reviews in Relativity, 14 (2011), 2  crossref  zmath  adsnasa  isi  scopus
    3. Brodsky S.J., Hoyer P., Phys Rev D, 83:4 (2011), 045026  crossref  adsnasa  isi  elib  scopus
    4. Acosta D., Fernandez De Cordoba P., Isidro J.M., Santander J.L.G., Int. J. Geom. Methods Mod. Phys., 9:5 (2012), 1250048  crossref  mathscinet  zmath  isi  elib  scopus
    5. De Raedt H., Katsnelson M.I., Michielsen K., Ann. Phys., 347 (2014), 45–73  crossref  mathscinet  zmath  adsnasa  isi  scopus
    6. De Raedt H., Katsnelson M.I., Donker H.C., Michielsen K., Ann. Phys., 359 (2015), 166–186  crossref  mathscinet  zmath  isi  scopus
  •       Pis'ma v Zhurnal ksperimental'noi i Teoreticheskoi Fiziki
    Number of views:
    This page:148
    Full text:51
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020