RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Fiz. Anal. Geom., 1996, Volume 3, Number 1/2, Pages 102–117 (Mi jmag485)  

On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$

V. N. Kokarev

Samara State University

Abstract: Let designation $\operatorname{spur}_m(z_{ij})=1$ stand for the sum of all principal $m$-order minors of matrix $(z_{ij})$, consisting of second derivatives of the function $z(x^1,…,x^n)$. Any complete convex class $C^{2\alpha}$ solution of the equation $\operatorname{spur}_m(z_{ij})=1$, ($2\le m<n$), will be a quadratic polynomial if the matrix $(z_{ij})$ eigenvalues are sufficiently close to each other.

Full text: PDF file (676 kB)
Full text: http:/.../abstract.php?uid=m03-0102r

Bibliographic databases:
Received: 25.01.1995

Citation: V. N. Kokarev, “On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$”, Mat. Fiz. Anal. Geom., 3:1/2 (1996), 102–117

Citation in format AMSBIB
\Bibitem{Kok96}
\by V.~N.~Kokarev
\paper On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$
\jour Mat. Fiz. Anal. Geom.
\yr 1996
\vol 3
\issue 1/2
\pages 102--117
\mathnet{http://mi.mathnet.ru/jmag485}
\zmath{https://zbmath.org/?q=an:0866.35027}


Linking options:
  • http://mi.mathnet.ru/eng/jmag485
  • http://mi.mathnet.ru/eng/jmag/v3/i1/p102

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:51
    Full text:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020