RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Mat. Fiz. Anal. Geom., 2013, Volume 9, Number 3, Pages 316–331 (Mi jmag567)  

This article is cited in 2 scientific papers (total in 2 papers)

Interaction between ”Accelerating-Packing” Flows for the Bryan–Pidduck Model

A. A. Gukalov

Department of Mechanics and Mathematics, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

Abstract: The interaction between the ”accelerating-packing” flows in a gas of rough spheres is studied. A bimodal distribution with the Maxwellian modes of special forms is used. Different sufficient conditions for the minimization of the uniform-integral error between the sides of the Bryan–Pidduk equation are obtained.

Key words and phrases: rough spheres, Bryan–Piddack equation, Maxwellian, "accelerating-packing” flows, error, bimodal distribution.

Full text: PDF file (207 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: Primary 76P05, 45K05; Secondary 82C40, 35Q55
Received: 02.03.2012
Revised: 20.06.2012
Language:

Citation: A. A. Gukalov, “Interaction between ”Accelerating-Packing” Flows for the Bryan–Pidduck Model”, Zh. Mat. Fiz. Anal. Geom., 9:3 (2013), 316–331

Citation in format AMSBIB
\Bibitem{Huk13}
\by A.~A.~Gukalov
\paper Interaction between ”Accelerating-Packing” Flows for the Bryan--Pidduck Model
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2013
\vol 9
\issue 3
\pages 316--331
\mathnet{http://mi.mathnet.ru/jmag567}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3155143}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000322697400003}


Linking options:
  • http://mi.mathnet.ru/eng/jmag567
  • http://mi.mathnet.ru/eng/jmag/v9/i3/p316

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Koleva M.N., Vulkov L.G., “a Splitting Flux Limiter Finite Difference Scheme For the Nonlinear Black-Scholes Equation”, Appl. Comput. Math., 13:3 (2014), 381–395  mathscinet  zmath  isi  elib
    2. V. D. Hordevs'kyi, O. O. Hukalov, “Approximate solutions of the Boltzmann equation with infinitely many modes”, Ukr. Math. J., 69:3 (2017), 361–375  crossref  isi  scopus
  • Number of views:
    This page:149
    Full text:39
    References:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020