RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Mat. Fiz. Anal. Geom., 2013, Volume 9, Number 3, Pages 360–378 (Mi jmag569)  

This article is cited in 4 scientific papers (total in 4 papers)

Real Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka–Webster Invariant Shape Operator

I. Jeong, E. Pak, Y. J. Suh

Department of Mathematics, Kyungpook National University, Taegu, Korea

Abstract: In this paper, we introduce a new notion of the generalized Tanaka–Webster invariant for a hypersurface $M$ in $G_2(\mathbb{C}^{m+2})$, and give a non-existence theorem for Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with generalized Tanaka–Webster invariant shape operator.

Key words and phrases: real hypersurfaces, complex two-plane Grassmannians, Hopf hypersurface, generalized Tanaka–Webster connection, Reeb parallel shape operator, $\mathfrak{D}^\perp$-parallel shape operator, Lie invariant shape operator.

Full text: PDF file (223 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: Primary 53C40; Secondary 53C15
Received: 19.11.2011
Revised: 15.03.2012
Language:

Citation: I. Jeong, E. Pak, Y. J. Suh, “Real Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka–Webster Invariant Shape Operator”, Zh. Mat. Fiz. Anal. Geom., 9:3 (2013), 360–378

Citation in format AMSBIB
\Bibitem{JeoPakSuh13}
\by I.~Jeong, E.~Pak, Y.~J.~Suh
\paper Real Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka--Webster Invariant Shape Operator
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2013
\vol 9
\issue 3
\pages 360--378
\mathnet{http://mi.mathnet.ru/jmag569}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3155145}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000322697400005}


Linking options:
  • http://mi.mathnet.ru/eng/jmag569
  • http://mi.mathnet.ru/eng/jmag/v9/i3/p360

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Jeong, E. Pak, Y. J. Suh, “Lie Invariant Shape Operator for Real Hypersurfaces in Complex Two-Plane Grassmannians II”, Zhurn. matem. fiz., anal., geom., 9:4 (2013), 455–475  mathnet  mathscinet
    2. E. Pak, G. J. Kim, Y. J. Suh, “Real hypersurfaces in complex two-plane Grassmannians with GTW Reeb Lie derivative structure Jacobi operator”, Mediterr. J. Math., 13:3 (2016), 1263–1272  crossref  mathscinet  zmath  isi  scopus
    3. J. De Dios Perez, “Lie derivatives on a real hypersurface in complex two-plane Grassmannians”, Publ. Math.-Debr., 89:1-2 (2016), 63–71  crossref  mathscinet  zmath  isi  scopus
    4. J. de Dios Perez, “Lie derivatives and structure Jacobi operator on real hypersurfaces in complex projective spaces”, Differ. Geom. Appl., 50 (2017), 1–10  crossref  mathscinet  zmath  isi  scopus
  • Number of views:
    This page:95
    Full text:29
    References:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020