RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Журн. матем. физ., анал., геом.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Журн. матем. физ., анал., геом., 2014, том 10, номер 3, страницы 309–319 (Mi jmag596)  

Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies

V. I. Diskant

Cherkasy State Technologic University, 460 Shevchenko Blvd., Cherkasy 18006, Ukraine

Аннотация: The following inequalities are proved:
\begin{eqnarray*} S^n(A,B)\geq n^n\sum\limits_{i=0}^{k-1} V(B_{A_i})( V^{n-1}(A_i) - V^{n-1}(A_{i+1}) ) +S^n(A_{-T}(B),B), \end{eqnarray*}

\begin{eqnarray*} S^n(A,B)\geq n^n\int\limits_{0}^{T} g(t) df(t) +S^n(A_{-T}(B),B), \end{eqnarray*}

\begin{eqnarray*} S^n(A,B)\geq n^n\int\limits_{0}^{q} g(t) df(t) +S^n(A_{-q}(B),B), \end{eqnarray*}
where $V(A)$, $V(B)$ stand for the volumes of convex bodies $A$ and $B$ in $\mathbb R^n$ ($n\geq 2$), $S(A,B)$ denotes the area of the surface of the body $A$ relative to the body $B$, $q$ is the capacity factor of the body $B$ with respect to the body $A$, $A_i = A_{-t_i}(B) = A / (t_iB)$ is the inner body parallel to the body $A$ with respect to the body $B$ at a distance $t_i$, $0=t_0 < t_1 <\ldots< t_i< \ldots < t_{k-1}<t_k=T<q$, $B_{A_i}$ is a shape body of $A_i$ relative to $B$, $g(t) = V(B_{A_{-t}(B)})$, $f(t) = - V^{n-1}( A_{-t}(B))$, $\int\limits_{0}^{T} g(t) df(t) $ is the Riemann–Stieltjes integral of the function $g(t)$ by the function $f(t)$, and $\int\limits_{0}^{q} g(t) df(t) = \lim\limits_{T\to q} \int\limits_{0}^{T} g(t) df(t)$.

Ключевые слова и фразы: convex body, isoperimetric inequality, Minkowski inequality.

DOI: https://doi.org/10.15407/mag10.03.309

Полный текст: PDF файл (227 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 53B50
Поступила в редакцию: 14.05.2013
Исправленный вариант: 23.12.2013
Язык публикации: английский

Образец цитирования: V. I. Diskant, “Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies”, Журн. матем. физ., анал., геом., 10:3 (2014), 309–319

Цитирование в формате AMSBIB
\RBibitem{Dis14}
\by V.~I.~Diskant
\paper Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies
\jour Журн. матем. физ., анал., геом.
\yr 2014
\vol 10
\issue 3
\pages 309--319
\mathnet{http://mi.mathnet.ru/jmag596}
\crossref{https://doi.org/10.15407/mag10.03.309}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3470290}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000346135800003}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/jmag596
  • http://mi.mathnet.ru/rus/jmag/v10/i3/p309

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:66
    Полный текст:31
    Литература:22

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019