RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Mat. Fiz. Anal. Geom., 2014, Volume 10, Number 4, Pages 451–484 (Mi jmag605)  

This article is cited in 2 scientific papers (total in 2 papers)

On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups

V. Vasilchuk

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv, 61103, Ukraine

Abstract: We consider first the $n\times n$ random matrices $ H_{n}=A_{n}+U_{n}^{* }B_{n}U_{n}$, where $A_{n}$ and $B_{n}$ are Hermitian, having the limiting normalized counting measure (NCM) of eigenvalues as $ n\rightarrow \infty$, and $U_{n}$ is unitary uniformly distributed over $ U(n)$. We find the leading term of asymptotic expansion for the covariance of elements of resolvent of $H_{n}$ and establish the Central Limit Theorem for the elements of sufficiently smooth test functions of the corresponding linear statistics. We consider then analogous problems for the matrices $ W_{n}=S_{n}U_{n}^{* }T_{n}U_{n}$, where $U_n $ is as above and $S_n$ and $T_n $ are non-random unitary matrices having limiting NCM's as $n\rightarrow \infty$.

Key words and phrases: Random matrices, Central Limit Theorem, Limit Laws.

DOI: https://doi.org/10.15407/mag10.04.451

Full text: PDF file (292 kB)
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 60F05, 15B52; Secondary 15A18
Received: 20.12.2013
Revised: 09.09.2014
Language:

Citation: V. Vasilchuk, “On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups”, Zh. Mat. Fiz. Anal. Geom., 10:4 (2014), 451–484

Citation in format AMSBIB
\Bibitem{Vas14}
\by V.~Vasilchuk
\paper On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2014
\vol 10
\issue 4
\pages 451--484
\mathnet{http://mi.mathnet.ru/jmag605}
\crossref{https://doi.org/10.15407/mag10.04.451}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3309798}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000346136000005}


Linking options:
  • http://mi.mathnet.ru/eng/jmag605
  • http://mi.mathnet.ru/eng/jmag/v10/i4/p451

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Girko V.L., “30 years of General Statistical Analysis and canonical equation K60 for Hermitian matrices (A+ BUC)(A+ BUC)*, where U is a random unitary matrix”, Random Operators Stoch. Equ., 23:4 (2015), 235–260  crossref  mathscinet  zmath  isi
    2. V. L. Girko, “The Canonical Equations $K_{66}$, $K_{67}$, $K_{68}$ and $K_{69}$”, Random Operators Stoch. Equ., 24:3 (2016), 173–197  crossref  mathscinet  zmath  isi  scopus
  • Number of views:
    This page:89
    Full text:31
    References:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020