|
The extended Leibniz rule and related equations in the space of rapidly decreasing functions
Hermann Königa, Vitali Milmanb a Mathematisches Seminar, Universität Kiel, 24098 Kiel, Germany
b School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978,
Israel
Abstract:
We solve the extended Leibniz rule $T(f\cdot g)=Tf \cdot Ag+Af\cdot Tg$ for operators $T$ and $A$ in the space of rapidly decreasing functions in both cases of complex and real-valued functions. We find that $Tf$ may be a linear combination of logarithmic derivatives of $f$ and its complex conjugate $\overline{f}$ with smooth coefficients up to some finite orders $m$ and $n$ respectively and $Af=f^{m}\cdot \overline{f}$ $^{n} $. In other cases $Tf$ and $Af$ may include separately the real and the imaginary part of $f$. In some way the equation yields a joint characterization of the derivative and the Fourier transform of $f$. We discuss conditions when $T$ is the derivative and $A$ is the identity. We also consider differentiable solutions of related functional equations reminiscent of those for the sine and cosine functions.
Key words and phrases:
rapidly decreasing functions, extended Leibniz rule, Fourier transform.
DOI:
https://doi.org/10.15407/mag14.03.336
Full text:
PDF file (424 kB)
References:
PDF file
HTML file
Bibliographic databases:
MSC: 39B42, 47A62, 26A24 Received: 08.02.2018
Language:
Citation:
Hermann König, Vitali Milman, “The extended Leibniz rule and related equations in the space of rapidly decreasing functions”, Zh. Mat. Fiz. Anal. Geom., 14:3 (2018), 336–361
Citation in format AMSBIB
\Bibitem{KonMil18}
\by Hermann~K\"onig, Vitali~Milman
\paper The extended Leibniz rule and related equations in the space of rapidly decreasing functions
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2018
\vol 14
\issue 3
\pages 336--361
\mathnet{http://mi.mathnet.ru/jmag703}
\crossref{https://doi.org/10.15407/mag14.03.336}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000450683100005}
Linking options:
http://mi.mathnet.ru/eng/jmag703 http://mi.mathnet.ru/eng/jmag/v14/i3/p336
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 84 | Full text: | 22 | References: | 8 |
|