|
This article is cited in 5 scientific papers (total in 5 papers)
The dual problem to M. A. Goldshtik problem with arbitrary vorticity
Isaak I. Vainshtein Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, Russia
Abstract:
The existence of solutions of the dual problem to M. A. Goldshtik problem with arbitrary vorticity was proved in this paper. The effect of non-uniqueness of the solution was determined on a model example.
Keywords:
vortex and potential flows, integral equation, Green function, Liouville equation.
Full text:
PDF file (227 kB)
References:
PDF file
HTML file
UDC:
517.956.25+532.51 Received: 18.06.2010 Received in revised form: 25.07.2010 Accepted: 10.08.2010
Citation:
Isaak I. Vainshtein, “The dual problem to M. A. Goldshtik problem with arbitrary vorticity”, J. Sib. Fed. Univ. Math. Phys., 3:4 (2010), 500–506
Citation in format AMSBIB
\Bibitem{Vai10}
\by Isaak~I.~Vainshtein
\paper The dual problem to M.\,A.~Goldshtik problem with arbitrary vorticity
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2010
\vol 3
\issue 4
\pages 500--506
\mathnet{http://mi.mathnet.ru/jsfu148}
Linking options:
http://mi.mathnet.ru/eng/jsfu148 http://mi.mathnet.ru/eng/jsfu/v3/i4/p500
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Isaak I. Vainshtein, “Reshenie dvukh dualnykh zadach o skleike vikhrevykh i potentsialnykh techenii variatsionnym metodom M. A. Goldshtika”, Zhurn. SFU. Ser. Matem. i fiz., 4:3 (2011), 320–331
-
D. K. Potapov, “O kolichestve reshenii v zadachakh na sobstvennye znacheniya dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(26) (2012), 251–255
-
Dmitrii K. Potapov, “Zadachi upravleniya dlya uravnenii so spektralnym parametrom i razryvnym operatorom pri nalichii vozmuschenii”, Zhurn. SFU. Ser. Matem. i fiz., 5:2 (2012), 239–245
-
Isaak I. Vainshtein, Irina M. Fedotova, “Dualnaya zadacha k zadache M. A. Goldshtika s neogranichennoi zavikhrennostyu”, Zhurn. SFU. Ser. Matem. i fiz., 5:4 (2012), 515–526
-
D. K. Potapov, “On solutions of the Gol'dshtik problem”, Num. Anal. Appl., 5:4 (2012), 342–347
|
Number of views: |
This page: | 309 | Full text: | 86 | References: | 37 |
|