RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


J. Sib. Fed. Univ. Math. Phys., 2010, Volume 3, Issue 4, Pages 556–564 (Mi jsfu154)  

This article is cited in 9 scientific papers (total in 9 papers)

An identification problem of the source function of the special form in two-dimensional parabolic equation

Igor V. Frolenkov, Ekaterina N. Kriger

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia

Abstract: The existence, uniqueness and stability of solution by input data of the identification problem for parabolic equation with source function of the special form in the case of Cauchy's data has been proved in this article.

Keywords: problem of the identification of source function, inverse problem, equations in partial derivatives, method of weak approximation, solution stability.

Full text: PDF file (155 kB)
References: PDF file   HTML file
UDC: 517.9
Received: 18.07.2010
Received in revised form: 25.08.2010
Accepted: 10.09.2010

Citation: Igor V. Frolenkov, Ekaterina N. Kriger, “An identification problem of the source function of the special form in two-dimensional parabolic equation”, J. Sib. Fed. Univ. Math. Phys., 3:4 (2010), 556–564

Citation in format AMSBIB
\Bibitem{FroKri10}
\by Igor~V.~Frolenkov, Ekaterina~N.~Kriger
\paper An identification problem of the source function of the special form in two-dimensional parabolic equation
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2010
\vol 3
\issue 4
\pages 556--564
\mathnet{http://mi.mathnet.ru/jsfu154}


Linking options:
  • http://mi.mathnet.ru/eng/jsfu154
  • http://mi.mathnet.ru/eng/jsfu/v3/i4/p556

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Anzhelika V. Datsenko, Svetlana V. Polyntseva, “O zadache identifikatsii dvukh mladshikh koeffitsientov i koeffitsienta pri proizvodnoi po vremeni v parabolicheskom uravnenii”, Zhurn. SFU. Ser. Matem. i fiz., 5:1 (2012), 63–74  mathnet
    2. Igor V. Frolenkov, Galina V. Romanenko, “O predstavlenii resheniya odnoi obratnoi zadachi dlya mnogomernogo parabolicheskogo uravneniya s nachalnymi dannymi v vide proizvedeniya”, Zhurn. SFU. Ser. Matem. i fiz., 5:1 (2012), 122–131  mathnet
    3. I. V. Frolenkov, G. V. Romanenko, “O reshenii odnoi obratnoi zadachi dlya mnogomernogo parabolicheskogo uravneniya”, Sib. zhurn. industr. matem., 15:2 (2012), 139–146  mathnet  mathscinet
    4. Igor V. Frolenkov, Ekaterina N. Kriger, “An identification problem of coefficient in the special form at source function for multi-dimensional parabolic equation with Cauchy data”, Zhurn. SFU. Ser. Matem. i fiz., 6:2 (2013), 186–199  mathnet
    5. I. V. Frolenkov, E. N. Kriger, “An existence of the solution for identification problem of coefficient in special form at source function”, J. Math. Sci., 203:4 (2014), 464–477  mathnet  crossref
    6. I. V. Frolenkov, G. V. Romanenko, “On the solvability of special systems of one-dimensional loaded parabolic equations and composite-type systems with Cauchy data”, J. Appl. Industr. Math., 8:2 (2014), 196–207  mathnet  crossref  mathscinet
    7. E. N. Kriger, I. V. Frolenkov, “An identification problem of coefficient in the special form at nonlinear lowest term for two-dimensional semilinear parabolic equation with the Cauchy data”, Russian Math. (Iz. VUZ), 59:5 (2015), 17–31  mathnet  crossref
    8. Ekaterina N. Kriger, Igor V. Frolenkov, “An identification problem of nonlinear lowest term coefficient in the special form for two-dimensional semilinear parabolic equation”, Zhurn. SFU. Ser. Matem. i fiz., 9:2 (2016), 180–191  mathnet  crossref
    9. S. G. Pyatkov, “On some classes of inverse problems with overdetermination data on spatial manifolds”, Siberian Math. J., 57:5 (2016), 870–880  mathnet  crossref  crossref  isi  elib  elib
  • Журнал Сибирского федерального университета. Серия "Математика и физика"
    Number of views:
    This page:319
    Full text:86
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020