RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


J. Sib. Fed. Univ. Math. Phys., 2011, Volume 4, Issue 1, Pages 11–17 (Mi jsfu157)  

On spherical cycles in the complement to complex hypersurfaces

Natalia A. Bushueva

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia

Abstract: It is known due to S. Yu. Nemirovski, that for $n\geq3$ and generic hypersurface $V\subset\mathbb C^n$ of degree $d\geq3$ there exists a sum of the Whitney spheres homotopic to an embedded sphere, which represents a nontrivial homological class of the homology group $H_n(\mathbb C^n\setminus V)$. We discuss whether a linear combination of the Whitney spheres can be represented as an embedded sphere.

Keywords: homology group, embedding, Whitney sphere.

Full text: PDF file (158 kB)
References: PDF file   HTML file
UDC: 517.55+512.7
Received: 10.09.2010
Received in revised form: 10.10.2010
Accepted: 20.11.2010
Language:

Citation: Natalia A. Bushueva, “On spherical cycles in the complement to complex hypersurfaces”, J. Sib. Fed. Univ. Math. Phys., 4:1 (2011), 11–17

Citation in format AMSBIB
\Bibitem{Bus11}
\by Natalia~A.~Bushueva
\paper On spherical cycles in the complement to complex hypersurfaces
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2011
\vol 4
\issue 1
\pages 11--17
\mathnet{http://mi.mathnet.ru/jsfu157}
\elib{http://elibrary.ru/item.asp?id=15540045}


Linking options:
  • http://mi.mathnet.ru/eng/jsfu157
  • http://mi.mathnet.ru/eng/jsfu/v4/i1/p11

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал Сибирского федерального университета. Серия "Математика и физика"
    Number of views:
    This page:180
    Full text:45
    References:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019