RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


J. Sib. Fed. Univ. Math. Phys., 2012, Volume 5, Issue 4, Pages 547–557 (Mi jsfu268)  

This article is cited in 7 scientific papers (total in 7 papers)

Holomorphic continuation of functions along finite families of complex lines in the ball

Alexander M. Kytmanov, Simona G. Myslivets

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia

Abstract: In this paper we consider continuous functions given on the boundary of a ball $B$ of $\mathbb C^n$, $n>1$ and having one-dimensional property of holomorphic extension along the families of complex lines, passing through finite number of points of $B$. We study the problem of existence of holomorphic continuation of such functions in a ball $B$.

Keywords: holomorphic continuation, Poisson integral.

Full text: PDF file (196 kB)
References: PDF file   HTML file
UDC: 517.55
Received: 29.03.2012
Received in revised form: 30.06.2012
Accepted: 31.08.2012

Citation: Alexander M. Kytmanov, Simona G. Myslivets, “Holomorphic continuation of functions along finite families of complex lines in the ball”, J. Sib. Fed. Univ. Math. Phys., 5:4 (2012), 547–557

Citation in format AMSBIB
\Bibitem{KytMys12}
\by Alexander~M.~Kytmanov, Simona~G.~Myslivets
\paper Holomorphic continuation of functions along finite families of complex lines in the ball
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2012
\vol 5
\issue 4
\pages 547--557
\mathnet{http://mi.mathnet.ru/jsfu268}


Linking options:
  • http://mi.mathnet.ru/eng/jsfu268
  • http://mi.mathnet.ru/eng/jsfu/v5/i4/p547

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Kuzovatov, A. M. Kytmanov, “On a boundary analog of the Forelli theorem”, Siberian Math. J., 54:5 (2013), 841–856  mathnet  crossref  mathscinet  isi
    2. Alexander M. Kytmanov, Simona G. Myslivets, “Holomorphic extension of continuous functions along finite families of complex lines in a ball”, Zhurn. SFU. Ser. Matem. i fiz., 8:3 (2015), 291–302  mathnet  crossref
    3. Kytmanov A.M., Myslivets S.G., “An Analog of the Hartogs Theorem in a Ball of C-N”, Math. Nachr., 288:2-3 (2015), 224–234  crossref  mathscinet  zmath  isi  elib  scopus
    4. A. M. Kytmanov, S. G. Myslivets, “Holomorphic extension of functions along finite families of complex straight lines in an $n$-circular domain”, Siberian Math. J., 57:4 (2016), 618–631  mathnet  crossref  crossref  isi  elib  elib
    5. Alexander M. Kytmanov, Simona G. Myslivets, “Multidimensional boundary analog of the Hartogs theorem in circular domains”, Zhurn. SFU. Ser. Matem. i fiz., 11:1 (2018), 79–90  mathnet  crossref
    6. Simona G. Myslivets, “Functions with the one-dimensional holomorphic extension property”, Zhurn. SFU. Ser. Matem. i fiz., 12:4 (2019), 439–443  mathnet  crossref
    7. Kytmanov A.M., Myslivets S.G., “on Functions With One-Dimensional Holomorphic Extension Property in Circular Domains”, Math. Nachr., 292:6 (2019), 1321–1332  crossref  mathscinet  zmath  isi  scopus
  • Журнал Сибирского федерального университета. Серия "Математика и физика"
    Number of views:
    This page:255
    Full text:77
    References:37

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020