|
This article is cited in 5 scientific papers (total in 5 papers)
Cauchy problem for multidimensional difference equations in lattice cones
Tatyana I. Nekrasova Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
Abstract:
We formulated condition ensuring the existence and uniqueness of solutions of the Cauchy problem for multidimensional linear differential equations with constant coefficients in the lattice cone. Based on the concept of a fundamental solution we deduced the formulae for solution of this problem.
Keywords:
multidimensional difference equation, Cauchy problem.
Full text:
PDF file (146 kB)
References:
PDF file
HTML file
UDC:
517.55+517.96 Received: 28.06.2012 Received in revised form: 28.07.2012 Accepted: 10.08.2012
Citation:
Tatyana I. Nekrasova, “Cauchy problem for multidimensional difference equations in lattice cones”, J. Sib. Fed. Univ. Math. Phys., 5:4 (2012), 576–580
Citation in format AMSBIB
\Bibitem{Nek12}
\by Tatyana~I.~Nekrasova
\paper Cauchy problem for multidimensional difference equations in lattice cones
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2012
\vol 5
\issue 4
\pages 576--580
\mathnet{http://mi.mathnet.ru/jsfu272}
Linking options:
http://mi.mathnet.ru/eng/jsfu272 http://mi.mathnet.ru/eng/jsfu/v5/i4/p576
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
T. I. Nekrasova, “Dostatochnye usloviya algebraichnosti proizvodyaschikh funktsii reshenii mnogomernykh raznostnykh uravnenii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 6:3 (2013), 88–96
-
T. I. Nekrasova, “Ob ierarkhii proizvodyaschikh funktsii reshenii mnogomernykh raznostnykh uravnenii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 9 (2014), 91–102
-
Tatiana I. Nekrasova, “On the Cauchy problem for multidimensional difference equations in rational cone”, Zhurn. SFU. Ser. Matem. i fiz., 8:2 (2015), 184–191
-
O. A. Shishkina, “Formula Eilera–Maklorena dlya ratsionalnogo parallelotopa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 13 (2015), 56–71
-
E. K. Leǐnartas, T. I. Nekrasova, “Constant coefficient linear difference equations on the rational cones of the integer lattice”, Siberian Math. J., 57:1 (2016), 74–85
|
Number of views: |
This page: | 228 | Full text: | 73 | References: | 36 |
|