|
This article is cited in 1 scientific paper (total in 1 paper)
$\mathcal P$-measure in the class of $m-wsh$ functions
Bakhrom I. Abdullaev Urgench State University, H. Olimjan, 14, Urgench, 220100 Uzbekistan
Abstract:
In this work we study the $\mathcal P$-measure and $\mathcal P$-capacity in the class of $m-wsh$ functions and prove a number of their properties.
Keywords:
$m-wsh$ function, $\mathcal P$-measure, $\mathcal P$-capacity, $mw$-regular point.
Full text:
PDF file (155 kB)
References:
PDF file
HTML file
UDC:
517.55+517.947.42 Received: 04.10.2013 Received in revised form: 16.11.2013 Accepted: 09.01.2014
Language:
Citation:
Bakhrom I. Abdullaev, “$\mathcal P$-measure in the class of $m-wsh$ functions”, J. Sib. Fed. Univ. Math. Phys., 7:1 (2014), 3–9
Citation in format AMSBIB
\Bibitem{Abd14}
\by Bakhrom~I.~Abdullaev
\paper $\mathcal P$-measure in the class of $m-wsh$ functions
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2014
\vol 7
\issue 1
\pages 3--9
\mathnet{http://mi.mathnet.ru/jsfu342}
Linking options:
http://mi.mathnet.ru/eng/jsfu342 http://mi.mathnet.ru/eng/jsfu/v7/i1/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
B. I. Abdullaev, A. A. Atamuratov, M. D. Vaisova, “Analogue of the Lelong's theorem for $m-wsh$ functions”, Topics in Several Complex Variables, Contemporary Mathematics, 662, eds. Z. Ibragimov, N. Levenberg, S. Pinchuk, A. Sadullaev, Amer. Math. Soc., 2016, 139–144
|
Number of views: |
This page: | 170 | Full text: | 49 | References: | 31 |
|