RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


J. Sib. Fed. Univ. Math. Phys., 2008, Volume 1, Issue 4, Pages 380–390 (Mi jsfu38)  

This article is cited in 7 scientific papers (total in 7 papers)

Hypercentral and Monic Automorphisms of Classical Algebras, Rings and Groups

Chander K. Guptaa, Vladimir M. Levchukb, Yurij Yu. Ushakovb

a Department of Mathematics, University of Manitoba, Winnipeg, Canada
b Institute of Mathematics, Siberian Federal University

Abstract: Up to standard multipliers all non-standard automorphisms of free associative algebras and polynomial algebras are reduced to monic automorphisms of the maximal ideal, which are studied in the present paper. For non-standard automorphisms of some locally nilpotent matrix groups and rings it has turned out to be more efficient to use hypercentral automorphisms.

Keywords: free associative algebra, polynomial algebra, finitary Chevalley group, unipotent subgroup, associated Lie ring, Jordan ring, automorphism.

Full text: PDF file (332 kB)
References: PDF file   HTML file
UDC: 512.5
Received: 10.09.2008
Accepted: 15.11.2008
Language:

Citation: Chander K. Gupta, Vladimir M. Levchuk, Yurij Yu. Ushakov, “Hypercentral and Monic Automorphisms of Classical Algebras, Rings and Groups”, J. Sib. Fed. Univ. Math. Phys., 1:4 (2008), 380–390

Citation in format AMSBIB
\Bibitem{GupLevUsh08}
\by Chander~K.~Gupta, Vladimir~M.~Levchuk, Yurij~Yu.~Ushakov
\paper Hypercentral and Monic Automorphisms of Classical Algebras, Rings and Groups
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2008
\vol 1
\issue 4
\pages 380--390
\mathnet{http://mi.mathnet.ru/jsfu38}
\elib{http://elibrary.ru/item.asp?id=11696807}


Linking options:
  • http://mi.mathnet.ru/eng/jsfu38
  • http://mi.mathnet.ru/eng/jsfu/v1/i4/p380

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Levchuk, G. S. Suleimanova, “Automorphisms and normal structure of unipotent subgroups of finitary Chevalley groups”, Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S118–S127  mathnet  crossref  isi  elib
    2. G. S. Suleimanova, “Klassy sopryazhennykh v gruppe Shevalle tipa $F_4$ bolshikh abelevykh podgrupp unipotentnoi podgruppy”, Vladikavk. matem. zhurn., 13:2 (2011), 45–55  mathnet  elib
    3. Galina S. Suleimanova, “Sopryazhennost v konechnoi gruppe Shevalle tipa $E_8$ bolshikh abelevykh unipotentnykh podgrupp”, Zhurn. SFU. Ser. Matem. i fiz., 4:4 (2011), 536–540  mathnet
    4. V. M. Levchuk, G. S. Suleimanova, “The normal structure of the unipotent subgroup in Lie type groups and its extremal subgroups”, J. Math. Sci., 185:3 (2012), 448–457  mathnet  crossref
    5. Levchuk V.M., Suleimanova G.S., “Extremal and maximal normal abelian subgroups of a maximal unipotent subgroup in groups of Lie type”, J Algebra, 349:1 (2012), 98–116  crossref  mathscinet  zmath  isi  elib
    6. Bardakov V.G., Neshchadim M.V., Sosnovsky Yu.V., “Groups of Triangular Automorphisms of a Free Associative Algebra and a Polynomial Algebra”, J. Algebra, 362 (2012), 201–220  crossref  mathscinet  zmath  isi  elib
    7. Vladimir M. Levchuk, Galina S. Suleimanova, “Thompson subgroups and large abelian unipotent subgroups of Lie-type groups”, Zhurn. SFU. Ser. Matem. i fiz., 6:1 (2013), 63–73  mathnet
  • Журнал Сибирского федерального университета. Серия "Математика и физика"
    Number of views:
    This page:275
    Full text:76
    References:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020