|
This article is cited in 2 scientific papers (total in 2 papers)
On the asymptotic of homological solutions to linear multidimensional difference equations
Natalia A. Bushuevaa, Konstantin V. Kuzvesovb, Avgust K. Tsikha a Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny, 79, Krasnoyarsk, 660041, Russia
b Multifunctional Center, 9 May, 12, Krasnoyarsk, 660125, Russia
Abstract:
Given a linear homogeneous multidimensional difference equation with constant coefficients, we choose a pair $(\gamma,\omega)$, where $\gamma$ is a homological $k$-dimensional cycle on the characteristic set of the equation and $\omega$ is a holomorphic form of degree $k$. This pair defines a so called homological solution by the integral over $\gamma$ of the form $\omega$ multiplied by an exponential kernel. A multidimensional variant of Perron's theorem in the class of homological solutions is illustrated by an example of the first order equation.
Keywords:
difference equation, asymptotic, amoebas of algebraic sets, logarithmic Gauss map.
Full text:
PDF file (265 kB)
References:
PDF file
HTML file
UDC:
517.55 Received: 18.08.2014 Received in revised form: 25.09.2014 Accepted: 20.10.2014
Language:
Citation:
Natalia A. Bushueva, Konstantin V. Kuzvesov, Avgust K. Tsikh, “On the asymptotic of homological solutions to linear multidimensional difference equations”, J. Sib. Fed. Univ. Math. Phys., 7:4 (2014), 417–430
Citation in format AMSBIB
\Bibitem{BusKuzTsi14}
\by Natalia~A.~Bushueva, Konstantin~V.~Kuzvesov, Avgust~K.~Tsikh
\paper On the asymptotic of homological solutions to linear multidimensional difference equations
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2014
\vol 7
\issue 4
\pages 417--430
\mathnet{http://mi.mathnet.ru/jsfu388}
Linking options:
http://mi.mathnet.ru/eng/jsfu388 http://mi.mathnet.ru/eng/jsfu/v7/i4/p417
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Mikhalkin E.N., Shchuplev A.V., Tsikh A.K., “Amoebas of Cuspidal Strata For Classical Discriminant”, Complex Analysis and Geometry, Kscv 10, Springer Proceedings in Mathematics & Statistics, 144, eds. Bracci F., Byun J., Gaussier H., Hirachi K., Kim K., Shcherbina N., Springer, 2015, 257–272
-
Valery V. Denisenko, Vladimir M. Sadovskii, Sergey S. Zamay, “Mathematical modeling of the impact produced by magnetic disks on living cells”, Zhurn. SFU. Ser. Matem. i fiz., 9:4 (2016), 432–442
|
Number of views: |
This page: | 270 | Full text: | 96 | References: | 25 |
|