|
This article is cited in 6 scientific papers (total in 6 papers)
Parameter determination in a differential equation of fractional order with Riemann–Liouville fractional derivative in a Hilbert space
Dmitry G. Orlovsky National Research Nuclear University MEPhI, Kashirskoye shosse, 31, Moscow, 115409, Russia
Abstract:
The Cauchy type problem for a differential equation with fractional derivative and self-adjoint operator in a Hilbert space is considered. The problem of parameter determination in equation by the value of the solution at a fixed point is presented. Theorems of existence and uniqueness of the solution are proved.
Keywords:
equation of fractional order, Hilbert space, self-adjoint operator, Cauchy-type problem, Mittag–Leffler function, inverse problem, characteristic function.
Full text:
PDF file (157 kB)
References:
PDF file
HTML file
UDC:
517.986.7 Received: 10.10.2014 Received in revised form: 20.11.2014 Accepted: 15.12.2014
Language:
Citation:
Dmitry G. Orlovsky, “Parameter determination in a differential equation of fractional order with Riemann–Liouville fractional derivative in a Hilbert space”, J. Sib. Fed. Univ. Math. Phys., 8:1 (2015), 55–63
Citation in format AMSBIB
\Bibitem{Orl15}
\by Dmitry~G.~Orlovsky
\paper Parameter determination in a differential equation of fractional order with Riemann--Liouville fractional derivative in a Hilbert space
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2015
\vol 8
\issue 1
\pages 55--63
\mathnet{http://mi.mathnet.ru/jsfu406}
Linking options:
http://mi.mathnet.ru/eng/jsfu406 http://mi.mathnet.ru/eng/jsfu/v8/i1/p55
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. E. Fedorov, N. D. Ivanova, “Identification problem for degenerate evolution equations of fractional order”, Fract. Calc. Appl. Anal., 20:3 (2017), 706–721
-
V. E. Fedorov, A. V. Nagumanova, “Obratnaya zadacha dlya evolyutsionnogo uravneniya s drobnoi proizvodnoi Gerasimova–Kaputo v sektorialnom sluchae”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 28 (2019), 123–137
-
V. E. Fedorov, A. V. Nagumanova, “Lineinye obratnye zadachi dlya odnogo klassa vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Materialy IV Mezhdunarodnoi nauchnoi konferentsii “Aktualnye problemy prikladnoi matematiki”. Kabardino-Balkarskaya respublika, Nalchik, Prielbruse, 22–26 maya 2018 g. Chast III, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 167, VINITI RAN, M., 2019, 97–111
-
V. E. Fedorov, R. R. Nazhimov, “Inverse problems for a class of degenerate evolution equations with Riemann - Liouville derivative”, Fract. Calc. Appl. Anal., 22:2 (2019), 271–286
-
D. G. Orlovsky, “Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space”, Vii International Conference Problems of Mathematical Physics and Mathematical Modelling, Journal of Physics Conference Series, 1205, IOP Publishing Ltd, 2019, 012042
-
N. Kinash, J. Janno, “Inverse problems for a generalized subdiffusion equation with final overdetermination”, Math. Model. Anal., 24:2 (2019), 236–262
|
Number of views: |
This page: | 202 | Full text: | 81 | References: | 22 |
|