|
This article is cited in 3 scientific papers (total in 3 papers)
The Euler–Maclaurin formula and differential operators of infinite order
Olga A. Shishkina Institute of Mathematics and Computer Science,
Siberian Federal University, Svobodny, 79, Krasnoyarsk, 660041, Russia
Abstract:
We use methods of the theory of differential operators of infinite order for solving difference equations and for generalizing the Euler–Maclaurin formula in the case of multiple summation.
Keywords:
indefinite summation, difference equations, differential operators of infinite order.
Full text:
PDF file (150 kB)
References:
PDF file
HTML file
UDC:
517.55+517.96 Received: 11.09.2014 Received in revised form: 02.10.2014 Accepted: 27.11.2014
Language:
Citation:
Olga A. Shishkina, “The Euler–Maclaurin formula and differential operators of infinite order”, J. Sib. Fed. Univ. Math. Phys., 8:1 (2015), 86–93
Citation in format AMSBIB
\Bibitem{Shi15}
\by Olga~A.~Shishkina
\paper The Euler--Maclaurin formula and differential operators of infinite order
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2015
\vol 8
\issue 1
\pages 86--93
\mathnet{http://mi.mathnet.ru/jsfu409}
Linking options:
http://mi.mathnet.ru/eng/jsfu409 http://mi.mathnet.ru/eng/jsfu/v8/i1/p86
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
O. A. Shishkina, “Formula Eilera–Maklorena dlya ratsionalnogo parallelotopa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 13 (2015), 56–71
-
O. A. Shishkina, “Mnogochleny Bernulli ot neskolkikh peremennykh i summirovanie monomov po tselym tochkam ratsionalnogo parallelotopa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 16 (2016), 89–101
-
Evgeniy K. Leinartas, Olga A. Shishkina, “The discrete analog of the Newton–Leibniz formula in the problem of summation over simplex lattice points”, Zhurn. SFU. Ser. Matem. i fiz., 12:4 (2019), 503–508
|
Number of views: |
This page: | 148 | Full text: | 69 | References: | 19 |
|