RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


J. Sib. Fed. Univ. Math. Phys., 2015, Volume 8, Issue 1, Pages 94–103 (Mi jsfu410)  

This article is cited in 2 scientific papers (total in 2 papers)

Application of self-gonfiguring genetic algorithm for human resource management

Andrej Škrabaa, Davorin Kofjača, Anja Žnidaršiča, Matjaž Maletiča, Črtomir Rozmanb, Eugene S. Semenkinc, Maria E. Semenkinac, Vladimir V. Stanovovc

a Faculty of Organizational Sciences, University of Maribor, Kidričeva cesta, 55a, SI-4000 Kranj, Slovenia
b Faculty of Agriculture and Life Sciences, University of Maribor, Pivola, 10, SI-2311 Hoče, Slovenia
c Siberian State Aerospace University, Krasnoyarsky rabochy, 31, Krasnoyarsk, 660014, Russia

Abstract: This paper describes the problem of human resource management which can appear in many organizations during restructuration periods. The problem is simulated by a dynamic model, similar to a supply chain model with several ranks. The problem of finding the optimal combination of transition coefficients, including the fluctuation coefficients, is transformed into an optimization problem. To solve this problem, a self-configuring genetic algorithm is applied with several constraint handling methods. Additional constraints are defined in order to avoid undesirable oscillations in the system. The results show that this problem can be efficiently solved by the presented methods.

Keywords: human resources management, simulation, genetic algorithm, constrained optimization, self-configuration.

Full text: PDF file (329 kB)
References: PDF file   HTML file
UDC: 519.78
Received: 10.11.2014
Received in revised form: 02.12.2014
Accepted: 15.12.2014
Language:

Citation: Andrej Škraba, Davorin Kofjač, Anja Žnidaršič, Matjaž Maletič, Črtomir Rozman, Eugene S. Semenkin, Maria E. Semenkina, Vladimir V. Stanovov, “Application of self-gonfiguring genetic algorithm for human resource management”, J. Sib. Fed. Univ. Math. Phys., 8:1 (2015), 94–103

Citation in format AMSBIB
\Bibitem{SkrKofZni15}
\by Andrej~{\v S}kraba, Davorin~Kofja{\v{c}}, Anja~{\v Z}nidar{\v s}i{\v{c}}, Matja{\v z}~Maleti{\v{c}}, {\v C}rtomir~Rozman, Eugene~S.~Semenkin, Maria~E.~Semenkina, Vladimir~V.~Stanovov
\paper Application of self-gonfiguring genetic algorithm for human resource management
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2015
\vol 8
\issue 1
\pages 94--103
\mathnet{http://mi.mathnet.ru/jsfu410}


Linking options:
  • http://mi.mathnet.ru/eng/jsfu410
  • http://mi.mathnet.ru/eng/jsfu/v8/i1/p94

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Skraba A., Semenkin E., Kofjac D., Semenkina M., Znidarsic A., Maletic M., Akhmedova Sh., Rozman C., Stanovov V., “Modelling and Optimization of Strictly Hierarchical Manpower System”, Icimco 2015 Proceedings of the 12Th International Conference on Informatics in Control, Automation and Robotics, Vol. 1, eds. Filipe J., Madani K., Gusikhin O., Sasiadek J., IEEE, 2015, 215–222  isi
    2. D. Zhao, J. Li, Yu. Tan, K. Yang, B. Ge, Ya. Dou, “Optimization adjustment of human resources based on dynamic heterogeneous network”, Physica A, 503 (2018), 45–57  crossref  isi  scopus
  • Журнал Сибирского федерального университета. Серия "Математика и физика"
    Number of views:
    This page:151
    Full text:52
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021