|
This article is cited in 3 scientific papers (total in 3 papers)
Local $R$-observability of differential-algebraic equations
Pavel S. Petrenko Matrosov Institute for System Dynamics and Control Theory of SB RAS,
Lermontov, 134, Irkutsk, 664033, Russia
Abstract:
A nonlinear system of first order ordinary differential equations is considered. The system is unresolved with respect to the derivative of the unknown function and it is identically degenerate in the domain. An arbitrarily high unresolvability index is admited. Analysis is carried out under assumptions that ensure the existence of a global structural form that separates "algebraic" and "differential" subsystems. Local $R$-observability conditions are obtained by linear approximation of the system.
Keywords:
local observability, differential-algebraic equation, observable nonlinear system.
DOI:
https://doi.org/10.17516/1997-1397-2016-9-3-353-363
Full text:
PDF file (139 kB)
References:
PDF file
HTML file
Bibliographic databases:
UDC:
517.926, 517.977.1 Received: 21.12.2015 Received in revised form: 05.02.2016 Accepted: 01.05.2016
Language:
Citation:
Pavel S. Petrenko, “Local $R$-observability of differential-algebraic equations”, J. Sib. Fed. Univ. Math. Phys., 9:3 (2016), 353–363
Citation in format AMSBIB
\Bibitem{Pet16}
\by Pavel~S.~Petrenko
\paper Local $R$-observability of differential-algebraic equations
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2016
\vol 9
\issue 3
\pages 353--363
\mathnet{http://mi.mathnet.ru/jsfu494}
\crossref{https://doi.org/10.17516/1997-1397-2016-9-3-353-363}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000412010000011}
Linking options:
http://mi.mathnet.ru/eng/jsfu494 http://mi.mathnet.ru/eng/jsfu/v9/i3/p353
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
P. S. Petrenko, “Nablyudaemost v klasse funktsii Chebysheva sistem differentsialno-algebraicheskikh uravnenii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 20 (2017), 61–74
-
P. S. Petrenko, “Robust controllability of linear differential-algebraic equations with unstructured uncertainty”, J. Appl. Industr. Math., 12:3 (2018), 519–530
-
P. S. Petrenko, “Robastnaya upravlyaemost nestatsionarnykh differentsialno-algebraicheskikh uravnenii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 25 (2018), 79–92
|
Number of views: |
This page: | 94 | Full text: | 33 | References: | 21 |
|