RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


J. Sib. Fed. Univ. Math. Phys., 2016, Volume 9, Issue 3, Pages 384–392 (Mi jsfu497)  

This article is cited in 2 scientific papers (total in 2 papers)

Multidimensional analog of the Bernoulli polynomials and its properties

Olga A. Shishkina

Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny, 79, Krasnoyarsk, 660041, Russia

Abstract: We consider a generalization of the Bernoulli numbers and polynomials to several variables, namely, we define the Bernoulli numbers associated with a rational cone and the corresponding Bernoulli polynomials. Also, we prove some properties of the Bernoulli polynomials.

Keywords: Bernoulli numbers and polynomials, generating functions, Todd operator, rational cone.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 14.Y26.31.0006
This work is supported by the Russian Federation Government grant to conduct research under the guidance of leading scientists at Siberian Federal University (contract 14.Y26.31.0006).


DOI: https://doi.org/10.17516/1997-1397-2016-9-3-384-392

Full text: PDF file (113 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.55+517.962.26
Received: 07.04.2016
Received in revised form: 18.05.2016
Accepted: 20.06.2016
Language:

Citation: Olga A. Shishkina, “Multidimensional analog of the Bernoulli polynomials and its properties”, J. Sib. Fed. Univ. Math. Phys., 9:3 (2016), 384–392

Citation in format AMSBIB
\Bibitem{Shi16}
\by Olga~A.~Shishkina
\paper Multidimensional analog of the Bernoulli polynomials and its properties
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2016
\vol 9
\issue 3
\pages 384--392
\mathnet{http://mi.mathnet.ru/jsfu497}
\crossref{https://doi.org/10.17516/1997-1397-2016-9-3-384-392}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000412010000014}


Linking options:
  • http://mi.mathnet.ru/eng/jsfu497
  • http://mi.mathnet.ru/eng/jsfu/v9/i3/p384

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. A. Shishkina, Sreelatha Chandragiri, “Generalized Bernoulli numbers and polynomials in the context of the Clifford analysis”, Zhurn. SFU. Ser. Matem. i fiz., 11:2 (2018), 127–136  mathnet  crossref
    2. E. K. Leinartas, T. I. Yakovleva, “The Cauchy problem for multidimensional difference equations and the preservation of the hierarchy of generating functions of its solutions”, Zhurn. SFU. Ser. Matem. i fiz., 11:6 (2018), 712–722  mathnet  crossref
  • Журнал Сибирского федерального университета. Серия "Математика и физика"
    Number of views:
    This page:89
    Full text:29
    References:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019