RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


J. Sib. Fed. Univ. Math. Phys., 2009, Volume 2, Issue 3, Pages 271–278 (Mi jsfu73)  

This article is cited in 20 scientific papers (total in 20 papers)

The Shortest Time and/or the Shortest Path Strategies in a CA FF Pedestrian Dynamics Model

Ekaterina S. Kirika, Tat'yana B. Yurgel'yanb, Dmitriy V. Krouglovc

a Institute of Computational Modelling, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia
b Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
c V. N. Sukacev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia

Abstract: The paper deals with a mathematical model of a pedestrian movement based on a stochastic cellular automata (CA) approach. A basis of the model obtained is the Floor Field (FF) model. FF models imply that virtual people follow the shortest path strategy. However, in reality people follow the strategy of the shortest time as well. The focus of the paper is on mathematical formalization and implementation of these features into a model of pedestrian movement. Some results of computer simulations are presented.

Keywords: cellular automata, pedestrian dynamics, transition probabilities, artificial intelligence.

Full text: PDF file (252 kB)
References: PDF file   HTML file
UDC: 51.77
Received: 10.06.2009
Received in revised form: 10.07.2009
Accepted: 15.07.2009
Language:

Citation: Ekaterina S. Kirik, Tat'yana B. Yurgel'yan, Dmitriy V. Krouglov, “The Shortest Time and/or the Shortest Path Strategies in a CA FF Pedestrian Dynamics Model”, J. Sib. Fed. Univ. Math. Phys., 2:3 (2009), 271–278

Citation in format AMSBIB
\Bibitem{KirYurKru09}
\by Ekaterina~S.~Kirik, Tat'yana~B.~Yurgel'yan, Dmitriy~V.~Krouglov
\paper The Shortest Time and/or the Shortest Path Strategies in a~CA FF Pedestrian Dynamics Model
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2009
\vol 2
\issue 3
\pages 271--278
\mathnet{http://mi.mathnet.ru/jsfu73}


Linking options:
  • http://mi.mathnet.ru/eng/jsfu73
  • http://mi.mathnet.ru/eng/jsfu/v2/i3/p271

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Hartmann D., “Adaptive pedestrian dynamics based on geodesics”, New J. Phys., 12 (2010), 043032  crossref  adsnasa  isi  scopus
    2. Kirik E., Yurgel'yan Tat'yana, Krouglov D., “On influencing of a space geometry on dynamics of some CA pedestrian movement model”, Cellular automata, Lecture Notes in Computer Science, 6350, Springer, Berlin, 2010, 474–479  crossref  zmath  isi  scopus
    3. Kirik E., Yurgel'yan Tat'yana, Krouglov D., “Artificial intelligence of virtual people in CA FF pedestrian dynamics model”, Parallel processing and applied mathematics, Part II, Lecture Notes in Computer Science, 6068, Springer, Berlin, 2010, 513–520  crossref  isi  scopus
    4. Tatyana B. Yurgelyan, Ekaterina S. Kirik, Dmitrii V. Kruglov, “O chuvstvitelnosti matematicheskoi modeli dvizheniya lyudei SIgMA.CA k geometrii puti”, Zhurn. SFU. Ser. Matem. i fiz., 4:4 (2011), 556–568  mathnet
    5. Kirik E., Yurgel'yan T., Krouglov D., “On realizing the shortest time strategy in a CA FF pedestrian dynamics model”, Cybernetics and Systems, 42:1 (2011), 1–15  crossref  zmath  isi  scopus
    6. Kretz T., Grosse A., Hengst S., Kautzsch L., Pohlmann A., Vortisch P., “Quickest paths in simulations of pedestrians”, Advances in Complex Systems, 14:5 (2011), 733–759  crossref  isi  scopus
    7. Kretz T., Hengst S., Roca V., Arias A.P., Friedberger S., Hanebeck U.D., “Calibrating Dynamic Pedestrian Route Choice with an Extended Range Telepresence System”, 2011 IEEE International Conference on Computer Vision Workshops (Iccv Workshops), IEEE, 2011  isi
    8. Xu Ya., Huang H.-J., “Simulation of exit choosing in pedestrian evacuation with consideration of the direction visual field”, Phys. A, 391:4 (2012), 991–1000  crossref  adsnasa  isi  scopus
    9. Wagoum Armel Ulrich Kemloh, Seyfried A., Holl S., “Modeling the Dynamic Route Choice of Pedestrians to Assess the Criticality of Building Evacuation”, Adv. Complex Syst., 15:7 (2012), 1250029  crossref  mathscinet  isi  scopus
    10. Liebig T., Wagoum Armel Ulrich Kemloh, “Modelling Microscopic Pedestrian Mobility Using Bluetooth”, Icaart: Proceedings of the 4th International Conference on Agents and Artificial Intelligence, Vol. 2, eds. Filipe J., Fred A., Scitepress, 2012, 270–275  crossref  isi
    11. Kirik E., Vitova Tat'yana, “On Validation of the SIGMA.Ca Pedestrian Dynamics Model with Bottleneck Flow”, Cellular Automata, Acri 2012, Lecture Notes in Computer Science, 7495, eds. Sirakoulis G., Bandini S., Springer-Verlag Berlin, 2012, 719–727  crossref  mathscinet  isi  scopus
    12. Davidich M., Geiss F., Mayer H.G., Pfaffinger A., Royer Ch., “Waiting Zones for Realistic Modelling of Pedestrian Dynamics: a Case Study Using Two Major German Railway Stations as Examples”, Transp. Res. Pt. C-Emerg. Technol., 37 (2013), 210–222  crossref  isi  scopus
    13. Kneidl A., Hartmann D., Borrmann A., “A Hybrid Multi-Scale Approach for Simulation of Pedestrian Dynamics”, Transp. Res. Pt. C-Emerg. Technol., 37 (2013), 223–237  crossref  isi  scopus
    14. Werberich B.R., Pretto C.O., Bettella Cybis H.B., “Pedestrian Route Choice Model Based on Friction Forces”, Simul.-Trans. Soc. Model. Simul. Int., 90:10 (2014), 1177–1187  crossref  isi  scopus
    15. Kirik E., Malyshev A., “on Validation of Sigmaeva Pedestrian Evacuation Computer Simulation Module With Bottleneck Flow”, J. Comput. Sci., 5:5 (2014), 847–850  crossref  isi  elib  scopus
    16. Kirik E., Vitova Tat'yana, “Cellular Automata Pedestrian Movement Model SIGMA.Ca: Model Parameters as An Instrument To Regulate Movement Regimes”, Cellular Automata: 11Th International Conference on Cellular Automata For Research and Industry, Lecture Notes in Computer Science, 8751, eds. Was J., Sirakoulis G., Bandini S., Springer Int Publishing Ag, 2014, 501–507  crossref  isi  scopus
    17. Werberich B.R., Pretto C.O., Bettella Cybis H.B., “Calibration of a Pedestrian Route Choice Model With a Basis in Friction Forces”, Transp. Res. Record, 2015, no. 2519, 137–145  crossref  isi  scopus
    18. Kirik E., Malyshev A., Popel E., “On the Validation of a Discrete-Continuous Model With Bottleneck Flow and Computational Artifacts”, Traffic and Granular Flow `13, eds. Chraibi M., Boltes M., Schadschneider A., Seyfried A., Springer Int Publishing Ag, 2015, 121–128  crossref  isi  scopus
    19. Kirik E., Vitova Tat'yana, “On Formal Presentation of Update Rules, Density Estimate and Using Floor Fields in Ca Ff Pedestrian Dynamics Model SIGMA.Ca”, Cellular Automata, Acri 2016, Lecture Notes in Computer Science, 9863, eds. ElYacoubi S., Was J., Bandini S., Springer Int Publishing Ag, 2016, 435–445  crossref  mathscinet  isi
    20. Galan S.F., “Fast Evacuation Method: Using An Effective Dynamic Floor Field Based on Efficient Pedestrian Assignment”, Saf. Sci., 120 (2019), 79–88  crossref  isi  scopus
  • Журнал Сибирского федерального университета. Серия "Математика и физика"
    Number of views:
    This page:577
    Full text:70
    References:37

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020