RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii J. Math., 2002, Volume 11, Pages 7–12 (Mi ljm114)  

On the coefficient multipliers theorem of Hardy and Littlewood

F. G. Avkhadieva, K.-J. Wirthsb

a Kazan State University
b Technische Universität Braunschweig, Institut für Analysis und Algebra

Abstract: Let $a_n(f)$ be the Taylor coefficients of a holomorphic function $f$ which belongs to the Hardy space $H^p$, $0<p<1$. We prove the estimate $C(p)\leq\pi\epsilon^p/[p(1-p)]$ in the Hardy-Littlewood inequality
$$ \sum_{n=0}^\infty\frac{|a_n(f)|^p}{(n+1)^{2-p}}\leq C(p)(\| f \|_p)^p. $$
We also give explicit estimates for sums $\sum|a_n(f)\lambda_n|^s$ the mixed norm space $H(1,s,\beta)$. In this way we obtain a new version of some results by Blasco and by Jevtič and Pavlovič.

Full text: PDF file (107 kB)
References: PDF file   HTML file

Bibliographic databases:

Received: 26.11.2002
Language: English

Citation: F. G. Avkhadiev, K.-J. Wirths, “On the coefficient multipliers theorem of Hardy and Littlewood”, Lobachevskii J. Math., 11 (2002), 7–12

Citation in format AMSBIB
\Bibitem{AvkWir02}
\by F.~G.~Avkhadiev, K.-J.~Wirths
\paper On the coefficient multipliers theorem of Hardy and Littlewood
\jour Lobachevskii J. Math.
\yr 2002
\vol 11
\pages 7--12
\mathnet{http://mi.mathnet.ru/ljm114}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1946352}
\zmath{https://zbmath.org/?q=an:1032.46037}


Linking options:
  • http://mi.mathnet.ru/eng/ljm114
  • http://mi.mathnet.ru/eng/ljm/v11/p7

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Lobachevskii Journal of Mathematics
    Number of views:
    This page:287
    Full text:131
    References:97

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017