Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii J. Math., 2019, Volume 40, Number 10, Pages 1619–1630 (Mi ljm192)  

Levy Laplacian on manifold and Yang–Mills heat flow

B. O. Volkovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 119991 Russia
b Bauman Moscow State Technical University, Moscow, 105005 Russia

Abstract: A covariant definition of the Levy Laplacian on an infinite dimensional manifold is introduced. It is shown that a time-depended connection in a finite dimensional vector bundle is a solution of the Yang–Mills heat equations if and only if the associated flow of the parallel transports is a solution of the heat equation for the covariant Levy Laplacian on the infinite dimensional manifold.

Keywords: Levy Laplacian, Yang–Mills equations, Yang–Mills heat equations, infinite dimensional manifold.

Funding Agency Grant Number
Russian Science Foundation 19-11-00320
This work was supported by the Russian Science Foundation under grant 19-11-00320.


DOI: https://doi.org/10.1134/S1995080219100305


Bibliographic databases:

ArXiv: 1905.01223
Received: 04.05.2019
Revised version: 13.05.2019
Language:

Linking options:
  • http://mi.mathnet.ru/eng/ljm192

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Lobachevskii Journal of Mathematics
    Number of views:
    This page:27

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021