RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2011, Volume 18, Number 3, Pages 82–100 (Mi mais189)  

This article is cited in 3 scientific papers (total in 3 papers)

Hypergraphs of special type and CUT polytope relaxations properties analysis

A. V. Nikolaev

P. G. Demidov Yaroslavl State University

Abstract: The topic of the research is a relationship between a class of hypergraphs of a special type and properties of the points of the cut polytope relaxations $M_{n,k}$. It is established that for a sufficiently large $n$ in $M_{n,4}$ and $M_{n,5}$ polytopes, there are points which have no integer vertices in any expansion in a convex combination of $M_{n,3}$ vertices.

Keywords: hypergraphs, cut polytope relaxations, rooted semimetric polytope, integrity recognition.

Full text: PDF file (512 kB)
References: PDF file   HTML file
UDC: 519.16 + 514.172.45
Received: 01.10.2010

Citation: A. V. Nikolaev, “Hypergraphs of special type and CUT polytope relaxations properties analysis”, Model. Anal. Inform. Sist., 18:3 (2011), 82–100

Citation in format AMSBIB
\Bibitem{Nik11}
\by A.~V.~Nikolaev
\paper Hypergraphs of special type and CUT polytope relaxations properties analysis
\jour Model. Anal. Inform. Sist.
\yr 2011
\vol 18
\issue 3
\pages 82--100
\mathnet{http://mi.mathnet.ru/mais189}


Linking options:
  • http://mi.mathnet.ru/eng/mais189
  • http://mi.mathnet.ru/eng/mais/v18/i3/p82

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Seliverstov, “Zamechaniya o raspolozheniyakh tochek na kvadrikakh”, Model. i analiz inform. sistem, 19:4 (2012), 72–77  mathnet
    2. V. A. Bondarenko, A. V. Nikolaev, M. E. Symanovich, R. O. Shemyakin, “On a recognition problem on cut polytope relaxations”, Autom. Remote Control, 75:9 (2014), 1626–1636  mathnet  crossref  isi
    3. V. A. Bondarenko, A. V. Nikolaev, “O netselochislennykh granyakh metricheskogo mnogogrannika”, Model. i analiz inform. sistem, 21:4 (2014), 25–34  mathnet
  • Моделирование и анализ информационных систем
    Number of views:
    This page:192
    Full text:85
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020