  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Impact factor Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Model. Anal. Inform. Sist.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Model. Anal. Inform. Sist., 2013, Volume 20, Number 3, Pages 77–85 (Mi mais312)  On Some Problem for a Simplex and a Cube in ${\mathbb R}^n$

M. V. Nevskii

P. G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia

Abstract: Let $S$ be a nondegenerate simplex in ${\mathbb R}^n$. Denote by $\alpha(S)$ the minimal $\sigma>0$ such that the unit cube $Q_n:=[0,1]^n$ is contained in a translate of $\sigma S$. In the case $\alpha(S)\ne 1$ the translate of $\alpha(S)S$ containing $Q_n$ is a homothetic copy of $S$ with the homothety center at some point $x\in{\mathbb R}^n$. We obtain the following computational formula for $x$. Denote by $x^{(j)}$ $(j=1,\ldots, n+1)$ the vertices of $S$. Let ${\mathbf A}$ be the matrix of order $n+1$ with the rows consisting of the coordinates of $x^{(j)};$ the last column of ${\mathbf A}$ consists of 1's. Suppose that ${\mathbf A}^{-1}=(l_{ij}).$ Then the coordinates of $x$ are the numbers
$$x_k= \frac{\sum_{j=1}^{n+1} (\sum_{i=1}^n |l_{ij}|)x^{(j)}_k -1} {\sum_{i=1}^n\sum_{j=1}^{n+1} |l_{ij}|- 2} \quad (k=1,\ldots,n).$$
Since $\alpha(S)\ne 1,$ the denominator from the right-hand part of this equality is not equal to zero. Also we give the estimates for norms of projections dealing with the linear interpolation of continuous functions defined on $Q_n$.

Keywords: $n$-dimensional simplex, $n$-dimensional cube, axial diameter, homothety, interpolation, projection. Full text: PDF file (406 kB) References: PDF file   HTML file
UDC: 514.17+517.51

Citation: M. V. Nevskii, “On Some Problem for a Simplex and a Cube in ${\mathbb R}^n$”, Model. Anal. Inform. Sist., 20:3 (2013), 77–85 Citation in format AMSBIB
\Bibitem{Nev13}
\by M.~V.~Nevskii
\paper On Some Problem for a Simplex and a Cube in ${\mathbb R}^n$
\jour Model. Anal. Inform. Sist.
\yr 2013
\vol 20
\issue 3
\pages 77--85
\mathnet{http://mi.mathnet.ru/mais312}

 SHARE:      •  Contact us: math-net2019_10 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2019