Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2014, Volume 21, Number 1, Pages 7–31 (Mi mais356)  

This article is cited in 1 scientific paper (total in 1 paper)

Corner Boundary Layer in Nonlinear Elliptic Problems Containing Derivatives of First Order

V. F. Butuzova, I. V. Denisovb

a M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
b L. N. Tolstoy Tula State Pedagogical University, pr. Lenina, 125, Tula, 300026, Russia

Abstract: In a rectangular domain the first boundary value problem is considered for a singularly perturbed elliptic equation
$$ \varepsilon^2\Delta u-\varepsilon^\alpha A(x, y)\frac{\partial u}{\partial y}= F(u,x,y,\varepsilon) $$
with a nonlinear on $u$ function $F$. The complete asymptotic solution expansion uniform in a closed rectangle is constructed for $\alpha> 1$. If $0<\alpha< 1$, the uniform asymptotic approximation is constructed in zero and first approximations. The features of the asymptotic behavior are noted in the case $\alpha=1$.

Keywords: boundary layer, singularly perturbed equation, asymptotic expansion.

Full text: PDF file (468 kB)
References: PDF file   HTML file
UDC: 519.632
Received: 07.01.2014

Citation: V. F. Butuzov, I. V. Denisov, “Corner Boundary Layer in Nonlinear Elliptic Problems Containing Derivatives of First Order”, Model. Anal. Inform. Sist., 21:1 (2014), 7–31

Citation in format AMSBIB
\Bibitem{ButDen14}
\by V.~F.~Butuzov, I.~V.~Denisov
\paper Corner Boundary Layer in Nonlinear Elliptic Problems Containing Derivatives of First Order
\jour Model. Anal. Inform. Sist.
\yr 2014
\vol 21
\issue 1
\pages 7--31
\mathnet{http://mi.mathnet.ru/mais356}


Linking options:
  • http://mi.mathnet.ru/eng/mais356
  • http://mi.mathnet.ru/eng/mais/v21/i1/p7

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. A. Tursunov, U. Z. Erkebaev, “Asimptoticheskoe razlozhenie resheniya zadachi Dirikhle dlya koltsa s osobennostyu na granitse”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2016, no. 1(39), 42–52  mathnet  crossref  elib
  • Моделирование и анализ информационных систем
    Number of views:
    This page:243
    Full text:66
    References:47

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022