RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2009, Volume 16, Number 1, Pages 16–23 (Mi mais45)  

On the number of components in edge unfoldings of convex polyhedra

V. V. Astakhov, A. A. Gavrilyuk

M. V. Lomonosov Moscow State University

Abstract: In the theory of convex polyhedra there is a problem left unsolved which is sometimes called The Durer problem: Does every convex polyhedron have at least one connected unfolding? In this paper we consider a related problem: Find the upper bound $c(P)$ for the number of components in the edge unfolding of a convex polyhedron $P$ in terms of the number $F$ of faces. We showed that $c(P)$ does not exceed the cardinality of any dominating set in the dual graph $G(P)$ of the polyhedron $P$. Next we proved that there exists a dominating set in $G(P)$ of cardinality not more than $3F/7$. These two statements lead to an estimation $c(P)\le 3F/7$ that was proved in this work.

Keywords: convex polyhedron, edge unfolding, dominating set

Full text: PDF file (237 kB)
References: PDF file   HTML file
UDC: 519.17
Received: 15.09.2008

Citation: V. V. Astakhov, A. A. Gavrilyuk, “On the number of components in edge unfoldings of convex polyhedra”, Model. Anal. Inform. Sist., 16:1 (2009), 16–23

Citation in format AMSBIB
\Bibitem{AstGav09}
\by V.~V.~Astakhov, A.~A.~Gavrilyuk
\paper On the number of components in edge unfoldings of convex polyhedra
\jour Model. Anal. Inform. Sist.
\yr 2009
\vol 16
\issue 1
\pages 16--23
\mathnet{http://mi.mathnet.ru/mais45}


Linking options:
  • http://mi.mathnet.ru/eng/mais45
  • http://mi.mathnet.ru/eng/mais/v16/i1/p16

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Моделирование и анализ информационных систем
    Number of views:
    This page:243
    Full text:77
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020