RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2016, Volume 23, Number 2, Pages 137–152 (Mi mais486)  

This article is cited in 4 scientific papers (total in 4 papers)

Cryptosystem based on induced group codes

V. M. Deundyakab, Yu. V. Kosolapova

a South Federal University, 105/42 Bolshaya Sadovaya Str., Rostov-on-Don, 344006, Russia
b FGNU NII "Specvuzavtomatika", 51 Gazetniy lane, Rostov-on-Don, 344002, Russia

Abstract: The code $C$ on a group $\mathcal{G}$, induced by the code $N$ on a subgroup $\mathcal{H}$, has the property that for decoding the code $C$ one can use the decoder for the code $N$. Therefore, if $N$ has an efficient algorithm for decoding, we can build a class of induced codes with known decoding algorithms. This feature is used in this paper to build the code McEliece-type public key cryptosystems on induced group codes. For this cryptosystem we described operations of encryption and decryption, an analysis of the resistance to the attack on the private key is proposed, and also weak keys are highlighted, which is used while breaking McEliece-type cryptosystem on the induced code $C$ is reduced to breaking this cryptosystem on the code $N$. It is shown that a practically resistant cryptosystem on the induced code $C$ can be built on the code $N$ with small length. Based on the proposed cryptosystem a common protocol for open channel key generation is developed.

Keywords: group codes, induced group codes, the McEliece cryptosystem.

DOI: https://doi.org/10.18255/1818-1015-2016-2-137-152

Full text: PDF file (715 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.9
Received: 15.03.2016

Citation: V. M. Deundyak, Yu. V. Kosolapov, “Cryptosystem based on induced group codes”, Model. Anal. Inform. Sist., 23:2 (2016), 137–152

Citation in format AMSBIB
\Bibitem{DeuKos16}
\by V.~M.~Deundyak, Yu.~V.~Kosolapov
\paper Cryptosystem based on induced group codes
\jour Model. Anal. Inform. Sist.
\yr 2016
\vol 23
\issue 2
\pages 137--152
\mathnet{http://mi.mathnet.ru/mais486}
\crossref{https://doi.org/10.18255/1818-1015-2016-2-137-152}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3504584}
\elib{http://elibrary.ru/item.asp?id=25810347}


Linking options:
  • http://mi.mathnet.ru/eng/mais486
  • http://mi.mathnet.ru/eng/mais/v23/i2/p137

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Deundyak, Yu. V. Kosolapov, E. A. Lelyuk, “Dekodirovanie tenzornogo proizvedeniya $\mathrm{MLD}$-kodov i prilozheniya k kodovym kriptosistemam”, Model. i analiz inform. sistem, 24:2 (2017), 239–252  mathnet  crossref  elib
    2. V. M. Deundyak, Yu. V. Kosolapov, “On the Berger–Loidreau cryptosystem on the tensor product of codes”, J. Comp. Eng. Math., 5:2 (2018), 16–33  mathnet  crossref  mathscinet  elib
    3. K. V. Vedenev, V. M. Deundyak, “Kody v diedralnoi gruppovoi algebre”, Model. i analiz inform. sistem, 25:2 (2018), 232–245  mathnet  crossref  elib
    4. Yu. V. Kosolapov, A. N. Shigaev, “Ob algoritme rasschepleniya nositelya dlya indutsirovannykh kodov”, Model. i analiz inform. sistem, 25:3 (2018), 276–290  mathnet  crossref  elib
  • Моделирование и анализ информационных систем
    Number of views:
    This page:358
    Full text:90
    References:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019