RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2016, Volume 23, Number 4, Pages 440–465 (Mi mais514)  

This article is cited in 1 scientific paper (total in 1 paper)

On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus 1

O. V. Nikol'skaya

A.G. and N.G. Stoletov Vladimir State University, Gorky str., 87, Vladimir, 600000, Russia

Abstract: Let $\pi_k:X_k\to C   (k = 1, 2)$ be a projective family of surfaces (possibly with degenerations) over a smooth projective curve $C$. Assume that the discriminant loci $\Delta_k=\{\delta\in C  \vert  \operatorname{Sing}(X_{k\delta})\neq\varnothing\} \quad (k = 1, 2)$ are disjoint, $h^{2,0}(X_{ks})=1,\quad h^{1,0}(X_{ks}) = 0$ for any smooth fibre $X_{ks}$ and the period map associated with the variation of Hodge structures $R^2\pi'_{k\ast}\mathbb{Q}$ (where $\pi'_k:X'_k\to C\setminus\Delta_k$ is a smooth part of the morphism $\pi_k$), is non-constant. If for generic geometric fibres $X_{1s}$ and $X_{2s}$ the following conditions hold:
(i) $b_2(X_{1s})-\operatorname{rank} \operatorname{NS}(X_{1s})$ is an odd integer;
(ii) $b_2(X_{1s})-\operatorname{rank}\operatorname{NS}(X_{1s})\neq b_2(X_{2s})-\operatorname{rank} \operatorname{NS}(X_{2s})$,
then for any smooth projective model $X$ of the fibre product $X_1\times_CX_2$ the Hodge conjecture on algebraic cycles is true.
If, besides, the morphisms $\pi_k$ are smooth, $p_k=b_2(X_{ks}) -\operatorname{rank} \operatorname{NS}(X_{ks})    (k = 1,2)$ are odd prime numbers and $p_1\neq p_2$, then for $X_1\times_CX_2$ and for the fibre square $X_1\times_CX_1$ the Hodge conjecture and the Grothendieck standard conjecture on algebraicity of operators $\ast$ and $\Lambda$ of Hodge theory hold as well.
This result yields new examples of smooth projective 5-dimensional varieties satisfying the Hodge and the Grothendieck conjectures, because one can take as smooth fibres of the morphism $\pi_k:X_k\to C$ some $K3$ surfaces, minimal regular surfaces of general type (of Kodaira dimension $\varkappa=2$) with geometric genus $1$ belonging to one of the following types: (a) surfaces with $K^2\leq 2$; (b) surfaces with $3\leq K^2\leq 8$, whose moduli are in the same component of the space of moduli as Todorov surface; (c) surfaces with $K^2 = 3$ with torsion of the Picard group $\mathbb{Z}/3\mathbb{Z}$.

Keywords: Hodge conjecture, standard conjecture, fibre product, Hodge group, Poincaré cycle.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-31-00266_мол_а
This work was supported by the Russian Foundation for basic research under the Grant No 16-31-00266.


DOI: https://doi.org/10.18255/1818-1015-2016-4-440-465

Full text: PDF file (801 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 512.7
Received: 07.06.2016

Citation: O. V. Nikol'skaya, “On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus 1”, Model. Anal. Inform. Sist., 23:4 (2016), 440–465

Citation in format AMSBIB
\Bibitem{Nik16}
\by O.~V.~Nikol'skaya
\paper On algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus~1
\jour Model. Anal. Inform. Sist.
\yr 2016
\vol 23
\issue 4
\pages 440--465
\mathnet{http://mi.mathnet.ru/mais514}
\crossref{https://doi.org/10.18255/1818-1015-2016-4-440-465}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3549346}
\elib{http://elibrary.ru/item.asp?id=26561563}


Linking options:
  • http://mi.mathnet.ru/eng/mais514
  • http://mi.mathnet.ru/eng/mais/v23/i4/p440

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. V. Oreshkina, “O gipotezakh Khodzha, Teita i Mamforda–Teita dlya rassloennykh proizvedenii semeistv regulyarnykh poverkhnostei s geometricheskim rodom 1”, Model. i analiz inform. sistem, 25:3 (2018), 312–322  mathnet  crossref  elib
  • Моделирование и анализ информационных систем
    Number of views:
    This page:149
    Full text:33
    References:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019