RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2016, Volume 23, Number 5, Pages 603–619 (Mi mais527)  

This article is cited in 7 scientific papers (total in 7 papers)

On numerical characteristics of а simplex and their estimates

M. V. Nevskii, A. Yu. Ukhalov

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia

Abstract: Let $n\in {\mathbb N}$, and let $Q_n=[0,1]^n$ be the $n$-dimensional unit cube. For a nondegenerate simplex $S\subset {\mathbb R}^n$, by $\sigma S$ we denote the homothetic image of $S$ with the center of homothety in the center of gravity of S and the ratio of homothety $\sigma$. We apply the following numerical characteristics of the simplex. Denote by $\xi(S)$ the minimal $\sigma>0$ with the property $Q_n\subset \sigma S$. By $\alpha(S)$ we denote the minimal $\sigma>0$ such that $Q_n$ is contained in a translate of a simplex $\sigma S$. By $d_i(S)$ we mean the $i$th axial diameter of $S$, i. e. the maximum length of a segment contained in $S$ and parallel to the $i$th coordinate axis. We apply the computational formulae for $\xi(S)$, $\alpha(S)$, $d_i(S)$ which have been proved by the first author. In the paper we discuss the case $S\subset Q_n$. Let $\xi_n=\min\{ \xi(S): S\subset Q_n\}. $ Earlier the first author formulated the conjecture: if $\xi(S)=\xi_n$, then $\alpha(S)=\xi(S)$. He proved this statement for $n=2$ and the case when $n+1$ is an Hadamard number, i. e. there exists an Hadamard matrix of order $n+1$. The following conjecture is a stronger proposition: for each $n$, there exist $\gamma\geq 1$, not depending on $S\subset Q_n$, such that $\xi(S)-\alpha(S)\leq \gamma (\xi(S)-\xi_n).$ By $\varkappa_n$ we denote the minimal $\gamma$ with such a property. If $n+1$ is an Hadamard number, then the precise value of $\varkappa_n$ is 1. The existence of $\varkappa_n$ for other $n$ was unclear. In this paper with the use of computer methods we obtain an equality
$$\varkappa_2 = \frac{5+2\sqrt{5}}{3}=3.1573\ldots $$
Also we prove a new estimate
$$\xi_4\leq \frac{19+5\sqrt{13}}{9}=4.1141\ldots,$$
which improves the earlier result $\xi_4\leq \frac{13}{3}=4.33\ldots$ Our conjecture is that $\xi_4$ is precisely $\frac{19+5\sqrt{13}}{9}$. Applying this value in numerical computations we achive the value
$$\varkappa_4 = \frac{4+\sqrt{13}}{5}=1.5211\ldots$$
Denote by $\theta_n$ the minimal norm of interpolation projection on the space of linear functions of $n$ variables as an operator from $C(Q_n)$ in $C(Q_n)$. It is known that, for each $n$,
$$\xi_n\leq \frac{n+1}{2}(\theta_n-1)+1,$$
and for $n=1,2,3,7$ here we have an equality. Using computer methods we obtain the result $\theta_4=\frac{7}{3}$. Hence, the minimal $n$ such that the above inequality has a strong form is equal to 4.

Keywords: simplex, cube, coefficient of homothety, axial diameter, linear interpolation, projection, norm, numerical methods.

DOI: https://doi.org/10.18255/1818-1015-2016-5-603-619

Full text: PDF file (680 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 514.17+517.51+519.6
Received: 07.07.2016

Citation: M. V. Nevskii, A. Yu. Ukhalov, “On numerical characteristics of а simplex and their estimates”, Model. Anal. Inform. Sist., 23:5 (2016), 603–619

Citation in format AMSBIB
\Bibitem{NevUkh16}
\by M.~V.~Nevskii, A.~Yu.~Ukhalov
\paper On numerical characteristics of а simplex and their estimates
\jour Model. Anal. Inform. Sist.
\yr 2016
\vol 23
\issue 5
\pages 603--619
\mathnet{http://mi.mathnet.ru/mais527}
\crossref{https://doi.org/10.18255/1818-1015-2016-5-603-619}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3569857}
\elib{http://elibrary.ru/item.asp?id=27202310}


Linking options:
  • http://mi.mathnet.ru/eng/mais527
  • http://mi.mathnet.ru/eng/mais/v23/i5/p603

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Nevskii, A. Yu. Ukhalov, “Novye otsenki chislovykh velichin, svyazannykh s simpleksom”, Model. i analiz inform. sistem, 24:1 (2017), 94–110  mathnet  crossref  mathscinet  elib
    2. M. V. Nevskii, A. Yu. Ukhalov, “On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$”, Automatic Control and Computer Sciences, 52:7 (2018), 667–679  mathnet  crossref  crossref  elib
    3. M. V. Nevskii, A. Yu. Ukhalov, “New Estimates of Numerical Values Related to a Simplex”, Autom. Control Comp. Sci., 51:7 (2017), 770–782  crossref  isi  scopus
    4. M. V. Nevskii, A. Yu. Ukhalov, “O minimalnom koeffitsiente pogloscheniya dlya $n$-mernogo simpleksa”, Model. i analiz inform. sistem, 25:1 (2018), 140–150  mathnet  crossref  elib
    5. M. V. Nevskii, A. Yu. Ukhalov, “On optimal interpolation by linear functions on an $n$-dimensional cube”, Automatic Control and Computer Sciences, 52:7 (2018), 828–842  mathnet  crossref  crossref  elib
    6. M. V. Nevskii, “O nekotorykh zadachakh dlya simpleksa i shara v ${\mathbb R}^n$”, Model. i analiz inform. sistem, 25:6 (2018), 680–691  mathnet  crossref
    7. M. Nevskii, A. Ukhalov, “Perfect simplices in $\mathbb {R^5}$”, Beitr. Algebr. Geom., 59:3 (2018), 501–521  crossref  mathscinet  zmath  isi  scopus
  • Моделирование и анализ информационных систем
    Number of views:
    This page:231
    Full text:59
    References:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020