
Asymptotic integration of a certain secondorder linear delay differential equation
P. N. Nesterov^{} ^{} P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia
Abstract:
We construct some asymptotic formulas for solutions of a certain linear secondorder delay differential equation when the independent variable tends to infinity. Two features concerning the considered equation should be emphasized. First, the coefficient of this equation has an oscillatory decreasing form. Second, when the delay equals zero, this equation turns into the socalled onedimensional Schrödinger equation at energy zero with Wigner–von Neumann type potential. Dynamics of the latter is wellknown. The question of interest is how the behavior of solutions changes qualitatively and quantitatively when the delay is introduced in this dynamical model. This equation also attracts interest from the standpoint of the theory of oscillations of solutions of functional differential equations. We apply the method of asymptotic integration that is based on the ideas of the centre manifold theory in its presentation with respect to the systems of functional differential equations with oscillatory decreasing coefficients. The essence of the method is to construct a socalled critical manifold in the phase space of the considered dynamical system. This manifold is attractive and positively invariant, and, therefore, the dynamics of all solutions of the initial equation is determined by the dynamics of the solutions lying on the critical manifold. The system that describes the dynamics of the solutions lying on the critical manifold is a linear system of two ordinary differential equations. To construct the asymptotics for solutions of this system, we use the averaging changes of variables and transformations that diagonalize variable matrices. We reduce the system on the critical manifold to what is called the $L$diagonal form. The asymptotics of the fundamental matrix of $L$diagonal system may be constructed by the use of the classical Levinson's theorem.
Keywords:
asymptotics, delay differential equation, Shrödinger equation, oscillating coefficients, oscillations of solutions, Levinson's theorem, method of averaging.
DOI:
https://doi.org/10.18255/1818101520165635656
Full text:
PDF file (684 kB)
References:
PDF file
HTML file
Bibliographic databases:
UDC:
517.929 Received: 05.05.2016
Citation:
P. N. Nesterov, “Asymptotic integration of a certain secondorder linear delay differential equation”, Model. Anal. Inform. Sist., 23:5 (2016), 635–656
Citation in format AMSBIB
\Bibitem{Nes16}
\by P.~N.~Nesterov
\paper Asymptotic integration of a certain secondorder linear delay differential equation
\jour Model. Anal. Inform. Sist.
\yr 2016
\vol 23
\issue 5
\pages 635656
\mathnet{http://mi.mathnet.ru/mais529}
\crossref{https://doi.org/10.18255/1818101520165635656}
\mathscinet{http://www.ams.org/mathscinetgetitem?mr=3569859}
\elib{http://elibrary.ru/item.asp?id=27202312}
Linking options:
http://mi.mathnet.ru/eng/mais529 http://mi.mathnet.ru/eng/mais/v23/i5/p635
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles

Number of views: 
This page:  138  Full text:  72  References:  20 
