RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2017, Volume 24, Number 1, Pages 94–110 (Mi mais551)  

This article is cited in 7 scientific papers (total in 7 papers)

New estimates of numerical values related to a simplex

M. V. Nevskii, A. Yu. Ukhalov

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia

Abstract: Let $n\in {\mathbb N}$ and $Q_n=[0,1]^n$. For a nondegenerate simplex $S\subset {\mathbb R}^n$, by $\sigma S$ we denote the homothetic copy of $S$ with center of homothety in the center of gravity of $S$ and ratio of homothety $\sigma$. By $\xi(S)$ we mean the minimal $\sigma>0$ such that $Q_n\subset \sigma S$. By $\alpha(S)$ denote the minimal $\sigma>0$ such that $Q_n$ is contained in a translate of $\sigma S$. By $d_i(S)$ we denote the $i$th axial diameter of $S$, i. e. the maximum length of the segment contained in $S$ and parallel to the $i$th coordinate axis. Formulae for $\xi(S)$, $\alpha(S)$, $d_i(S)$ were proved earlier by the first author. Define $\xi_n=\min\{ \xi(S): S\subset Q_n\}. $ We always have $\xi_n\geq n.$ We discuss some conjectures formulated in the previous papers. One of these conjectures is the following. For every $n$, there exists $\gamma>0$, not depending on $S\subset Q_n$, such that an inequality $\xi(S)-\alpha(S)\leq \gamma (\xi(S)-\xi_n)$ holds. Denote by $\varkappa_n$ the minimal $\gamma$ with such a property. We prove that $\varkappa_1=\frac{1}{2}$; for $n>1$, we obtain $\varkappa_n\geq 1$. If $n>1$ and $\xi_n=n,$ then $\varkappa_n=1$. The equality $\xi_n=n$ holds if $n+1$ is an Hadamard number, i. e. there exists an Hadamard matrix of order $n+1$. This proposition is known; we give one more proof with the direct use of Hadamard matrices. We prove that $\xi_5=5$. Therefore, there exists $n$ such that $n+1$ is not an Hadamard number and nevertheless $\xi_n=n$. The minimal $n$ with such a property is equal to $5$. This involves $\varkappa_5=1$ and also disproves the following previous conjecture of the first author concerning the characterization of Hadamard numbers in terms of homothety of simplices: $n+1$ is an Hadamard number if and only if $\xi_n=n$. This statement is valid only in one direction. There exists a simplex $S\subset Q_5$ such that the boundary of the simplex $5S$ contains all the vertices of the cube $Q_5$. We describe a one-parameter family of simplices contained in $Q_5$ with the property $\alpha(S)=\xi(S)=5.$ These simplices were found with the use of numerical and symbolic computations. Another new result is an inequality $\xi_6 <6.0166$. We also systematize some of our estimates of numbers $\xi_n$, $\theta_n$, $\varkappa_n$ derived by now. The symbol $\theta_n$ denotes the minimal norm of interpolation projection on the space of linear functions of $n$ variables as an operator from $C(Q_n)$ to $C(Q_n)$.

Keywords: simplex, cube, homothety, axial diameter, interpolation, projection, numerical methods.

DOI: https://doi.org/10.18255/1818-1015-2017-1-94-110

Full text: PDF file (1017 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 514.17+517.51+519.6
Received: 12.10.2016

Citation: M. V. Nevskii, A. Yu. Ukhalov, “New estimates of numerical values related to a simplex”, Model. Anal. Inform. Sist., 24:1 (2017), 94–110

Citation in format AMSBIB
\Bibitem{NevUkh17}
\by M.~V.~Nevskii, A.~Yu.~Ukhalov
\paper New estimates of numerical values related to a simplex
\jour Model. Anal. Inform. Sist.
\yr 2017
\vol 24
\issue 1
\pages 94--110
\mathnet{http://mi.mathnet.ru/mais551}
\crossref{https://doi.org/10.18255/1818-1015-2017-1-94-110}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3620403}
\elib{http://elibrary.ru/item.asp?id=28380084}


Linking options:
  • http://mi.mathnet.ru/eng/mais551
  • http://mi.mathnet.ru/eng/mais/v24/i1/p94

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Nevskii, A. Yu. Ukhalov, “On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$”, Automatic Control and Computer Sciences, 52:7 (2018), 667–679  mathnet  crossref  crossref  elib
    2. M. V. Nevskii, A. Yu. Ukhalov, “O minimalnom koeffitsiente pogloscheniya dlya $n$-mernogo simpleksa”, Model. i analiz inform. sistem, 25:1 (2018), 140–150  mathnet  crossref  elib
    3. M. V. Nevskii, A. Yu. Ukhalov, “On optimal interpolation by linear functions on an $n$-dimensional cube”, Automatic Control and Computer Sciences, 52:7 (2018), 828–842  mathnet  crossref  crossref  elib
    4. M. V. Nevskii, A. Yu. Ukhalov, “Nekotorye svoistva $0/1$-simpleksov”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 18:3 (2018), 305–315  mathnet  crossref  elib
    5. M. V. Nevskii, “O nekotorykh zadachakh dlya simpleksa i shara v ${\mathbb R}^n$”, Model. i analiz inform. sistem, 25:6 (2018), 680–691  mathnet  crossref
    6. M. V. Nevskii, A. Yu. Ukhalov, “Lineinaya interpolyatsiya na evklidovom share v ${\mathbb R}^n$”, Model. i analiz inform. sistem, 26:2 (2019), 279–296  mathnet  crossref
    7. M. V. Nevskii, “Geometricheskie otsenki pri interpolyatsii na $n$-mernom share”, Model. i analiz inform. sistem, 26:3 (2019), 441–449  mathnet  crossref
  • Моделирование и анализ информационных систем
    Number of views:
    This page:166
    Full text:55
    References:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020