RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2017, Volume 24, Number 2, Pages 239–252 (Mi mais561)  

This article is cited in 2 scientific papers (total in 2 papers)

Decoding the tensor product of $ \mathrm{MLD} $ codes and applications for code cryptosystems

V. M. Deundyakab, Yu. V. Kosolapovb, E. A. Lelyukb

a FGNU NII "Specvuzavtomatika", 51 Gazetniy lane, Rostov-on-Don 344002, Russia
b South Federal University, 105/42 Bolshaya Sadovaya Str., Rostov-on-Don 344006, Russia

Abstract: For the practical application of code cryptosystems such as McEliece, it is necessary that the code used in the cryptosystem should have a fast decoding algorithm. On the other hand, the code used must be such that finding a secret key from a known public key would be impractical with a relatively small key size. In this connection, in the present paper it is proposed to use the tensor product $ C_1 \otimes C_2 $ of group $\mathrm{MLD}$ codes $ C_1 $ and $ C_2 $ in a McEliece-type cryptosystem. The algebraic structure of the code $ C_1 \otimes C_2 $ in the general case differs from the structure of the codes $ C_1 $ and $ C_2 $, so it is possible to build stable cryptosystems of the McEliece type even on the basis of codes $ C_i $ for which successful attacks on the key are known. However, in this way there is a problem of decoding the code $ C_1 \otimes C_2 $. The main result of this paper is the construction and justification of a set of fast algorithms needed for decoding this code. The process of constructing the decoder relies heavily on the group properties of the code $ C_1 \otimes C_2 $. As an application, the McEliece-type cryptosystem is constructed on the code $ C_1 \otimes C_2 $ and an estimate is given of its resistance to attack on the key under the assumption that for code cryptosystems on codes $ C_i $ an effective attack on the key is possible. The results obtained are numerically illustrated in the case when $ C_1 $, $ C_2 $ are Reed–Muller–Berman codes for which the corresponding code cryptosystem was hacked by L. Minder and A. Shokrollahi (2007).

Keywords: majority decoder, Reed–Muller–Berman codes, tensor product codes.

DOI: https://doi.org/10.18255/1818-1015-2017-2-239-252

Full text: PDF file (639 kB)
References: PDF file   HTML file

UDC: 517.9
Received: 07.04.2017

Citation: V. M. Deundyak, Yu. V. Kosolapov, E. A. Lelyuk, “Decoding the tensor product of $ \mathrm{MLD} $ codes and applications for code cryptosystems”, Model. Anal. Inform. Sist., 24:2 (2017), 239–252

Citation in format AMSBIB
\Bibitem{DeuKosLel17}
\by V.~M.~Deundyak, Yu.~V.~Kosolapov, E.~A.~Lelyuk
\paper Decoding the tensor product of $ \mathrm{MLD} $ codes and applications for code cryptosystems
\jour Model. Anal. Inform. Sist.
\yr 2017
\vol 24
\issue 2
\pages 239--252
\mathnet{http://mi.mathnet.ru/mais561}
\crossref{https://doi.org/10.18255/1818-1015-2017-2-239-252}
\elib{http://elibrary.ru/item.asp?id=29064007}


Linking options:
  • http://mi.mathnet.ru/eng/mais561
  • http://mi.mathnet.ru/eng/mais/v24/i2/p239

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Deundyak, Yu. V. Kosolapov, “On the Berger–Loidreau cryptosystem on the tensor product of codes”, J. Comp. Eng. Math., 5:2 (2018), 16–33  mathnet  crossref  mathscinet  elib
    2. K. V. Vedenev, V. M. Deundyak, “Kody v diedralnoi gruppovoi algebre”, Model. i analiz inform. sistem, 25:2 (2018), 232–245  mathnet  crossref  elib
  • Моделирование и анализ информационных систем
    Number of views:
    This page:343
    Full text:100
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020