RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2017, Volume 24, Number 5, Pages 567–577 (Mi mais584)  

On locally convex curves

V. S. Klimov

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia

Abstract: We introduce the definition of locally convex curves and establish some properties of such curves. In the section 1, we consider the curve $K$ allowing the parametric representation $x = u(t),  y = v(t),   (a \leqslant t \leqslant b)$, where $u(t)$, $v(t)$ are continuously differentiable on $[a,b]$ functions such that $|u'(t)| + |v'(t)| > 0  \forall t \in [a,b]$. A continuous on $[a,b]$ function $\theta(t)$ is called the angle function of the curve $K$ if the following conditions hold: $u'(t) = \sqrt{(u'(t))^2 + (v'(t))^2}  \cos \theta(t), \quad v'(t) = \sqrt{(u'(t))^2 + (v'(t))^2}  \sin \theta(t)$. The curve $K$ is called locally convex if its angle function $\theta(t)$ is strictly monotonous on $[a,b]$. For a closed curve $K$ the number $deg K= \cfrac{\theta(b)- \theta(a)}{2 \pi}$ is whole. This number is equal to the number of rotations that the speed vector $(u'(t),v'(t))$ performs around the origin. The main result of the first section is the statement: if the curve $K$ is locally convex, then for any straight line $G$ the number $N(K;G)$ of intersections of $K$ and $G$ is finite and the estimate $N(K;G) \leqslant 2 |deg K|$ holds. We discuss versions of this estimate for closed and non-closed curves. In the sections 2 and 3, we consider curves arising in the investigation of a linear homogeneous differential equation of the form $L(x) \equiv x^{(n)} + p_1(t) x^{(n-1)} + \cdots p_n(t) x = 0 $ with locally summable coefficients $p_i(t)  (i = 1, \cdots,n)$. We demonstrate how conditions of disconjugacy of the differential operator $L$ that were established in works of G. A. Bessmertnyh and A. Yu. Levin, can be applied.

Keywords: regular curve, corner function, degree, straight line, differential equation, polyline.

DOI: https://doi.org/10.18255/1818-1015-2017-5-567-577

Full text: PDF file (574 kB)
References: PDF file   HTML file

UDC: 513.7
Received: 27.02.2017

Citation: V. S. Klimov, “On locally convex curves”, Model. Anal. Inform. Sist., 24:5 (2017), 567–577

Citation in format AMSBIB
\Bibitem{Kli17}
\by V.~S.~Klimov
\paper On locally convex curves
\jour Model. Anal. Inform. Sist.
\yr 2017
\vol 24
\issue 5
\pages 567--577
\mathnet{http://mi.mathnet.ru/mais584}
\crossref{https://doi.org/10.18255/1818-1015-2017-5-567-577}
\elib{http://elibrary.ru/item.asp?id=30353168}


Linking options:
  • http://mi.mathnet.ru/eng/mais584
  • http://mi.mathnet.ru/eng/mais/v24/i5/p567

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Моделирование и анализ информационных систем
    Number of views:
    This page:87
    Full text:39
    References:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020