RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2017, Volume 24, Number 5, Pages 578–595 (Mi mais585)  

This article is cited in 3 scientific papers (total in 3 papers)

On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$

M. V. Nevskii, A. Yu. Ukhalov

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia

Abstract: Let $n\in{\mathbb N}$, $Q_n=[0,1]^n.$ For a nondegenerate simplex $S\subset {\mathbb R}^n$, by $\sigma S$ we denote the homothetic image of $S$ with the center of homothety in the center of gravity of $S$ and ratio of homothety $\sigma$. By $d_i(S)$ we mean the $i$-th axial diameter of $S$, i. e. the maximum length of a line segment in $S$ parallel to the $i$th coordinate axis. Let $\xi(S)=\min \{\sigma\geq 1: Q_n\subset \sigma S\},$ $\xi_n=\min \{ \xi(S):   S\subset Q_n \}.$ By $\alpha(S)$ we denote the minimal $\sigma>0$ such that $Q_n$ is contained in a translate of simplex $\sigma S$. Consider $(n+1)\times(n+1)$-matrix $\mathbf{A}$ with the rows containing coordinates of vertices of $S$; the last column of $\mathbf{A}$ consists of 1's. Put $\mathbf{A}^{-1}$ $=(l_{ij})$. Denote by $\lambda_j$ a linear function on ${\mathbb R}^n$ with coefficients from the $j$-th column of $\mathbf{A}^{-1}$, i. e. $\lambda_j(x)= l_{1j}x_1+\ldots+ l_{nj}x_n+l_{n+1,j}.$ Earlier, the first author proved the equalities $ \frac{1}{d_i(S)}=\frac{1}{2}\sum_{j=1}^{n+1} |l_{ij}|, \alpha(S) =\sum_{i=1}^n\frac{1}{d_i(S)}.$ In the present paper, we consider the case $S\subset Q_n$. Then all the $d_i(S)\leq 1$, therefore, $n\leq \alpha(S)\leq \xi(S).$ If for some simplex $S^\prime\subset Q_n$ holds $\xi(S^\prime)=n,$ then $\xi_n=n$, $\xi(S^\prime)=\alpha(S^\prime)$, and $d_i(S^\prime)=1$. However, such simplices $S^\prime$ do not exist for all the dimensions $n$. The first value of $n$ with such a property is equal to $2$. For each 2-dimensional simplex, $\xi(S)\geq \xi_2=1+\frac{3\sqrt{5}}{5}=2.34 \ldots>2$. We have an estimate $n\leq \xi_n<n+1$. The equality $\xi_n=n$ takes place if there exists an Hadamard matrix of order $n+1$. Further study showed that $\xi_n=n$ also for some other $n$. In particular, simplices with the condition $S\subset Q_n\subset nS$ were built for any odd $n$ in the interval $1\leq n\leq 11$. In the first part of the paper, we present some new results concerning simplices with such a condition. If $S\subset Q_n\subset nS$, the center of gravity of $S$ coincide, with the center of $Q_n$. We prove that $\sum_{j=1}^{n+1} |l_{ij}|=2 \quad (1\leq i\leq n), \sum_{i=1}^{n} |l_{ij}|=\frac{2n}{n+1} (1\leq j\leq n+1).$ Also we give some corollaries. In the second part of the paper, we consider the following conjecture. Let for simplex $S\subset Q_n$ an equality $\xi(S)=\xi_n$ holds. Then $(n-1)$-dimensional hyperplanes containing the faces of $S$ cut from the cube $Q_n$ the equal-sized parts. Though it is true for $n=2$ and $n=3$, in the general case this conjecture is not valid.

Keywords: $n$-dimensional simplex, $n$-dimensional cube, homothety, axial diameter, interpolation, projection, numerical methods.

Funding Agency Grant Number
The work was supported by the initiative research of Yaroslavl State University VIP-008.


DOI: https://doi.org/10.18255/1818-1015-2017-5-578-595

Full text: PDF file (806 kB)
References: PDF file   HTML file

English version:
Automatic Control and Computer Sciences, 2018, 52:7, 667–679

UDC: 514.17+517.51+519.6
Received: 10.02.2017

Citation: M. V. Nevskii, A. Yu. Ukhalov, “On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$”, Model. Anal. Inform. Sist., 24:5 (2017), 578–595; Automatic Control and Computer Sciences, 52:7 (2018), 667–679

Citation in format AMSBIB
\Bibitem{NevUkh17}
\by M.~V.~Nevskii, A.~Yu.~Ukhalov
\paper On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$
\jour Model. Anal. Inform. Sist.
\yr 2017
\vol 24
\issue 5
\pages 578--595
\mathnet{http://mi.mathnet.ru/mais585}
\crossref{https://doi.org/10.18255/1818-1015-2017-5-578-595}
\elib{http://elibrary.ru/item.asp?id=30353169}
\transl
\jour Automatic Control and Computer Sciences
\yr 2018
\vol 52
\issue 7
\pages 667--679
\crossref{https://doi.org/10.3103/S0146411618070192}


Linking options:
  • http://mi.mathnet.ru/eng/mais585
  • http://mi.mathnet.ru/eng/mais/v24/i5/p578

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Yu. Ukhalov, M. V. Nevskii, “Ob optimalnoi interpolyatsii lineinymi funktsiyami na $n$-mernom kube”, Model. i analiz inform. sistem, 25:3 (2018), 291–311  mathnet  crossref  elib
    2. A. Yu. Ukhalov, M. V. Nevskii, “Nekotorye svoistva $0/1$-simpleksov”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 18:3 (2018), 305–315  mathnet  crossref  elib
    3. M. V. Nevskii, “O nekotorykh zadachakh dlya simpleksa i shara v ${\mathbb R}^n$”, Model. i analiz inform. sistem, 25:6 (2018), 680–691  mathnet  crossref
  • Моделирование и анализ информационных систем
    Number of views:
    This page:143
    Full text:34
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020