RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2018, Volume 25, Number 1, Pages 140–150 (Mi mais617)  

This article is cited in 2 scientific papers (total in 2 papers)

Computational Geometry

On minimal absorption index for an $n$-dimensional simplex

M. V. Nevskii, A. Yu. Ukhalov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003, Russian Federation

Abstract: Let $n\in{\mathbb N}$ and let $Q_n$ be the unit cube $[0,1]^n$. For a nondegenerate simplex $S\subset{\mathbb R}^n$, by $\sigma S$ denote the homothetic copy of $S$ with center of homothety in the center of gravity of $S$ and ratio of homothety $\sigma.$ Put $\xi(S)=\min \{\sigma\geq 1: Q_n\subset \sigma S\}.$ We call $\xi(S)$ an absorption index of simplex $S$. In the present paper, we give new estimates for the minimal absorption index of the simplex contained in $Q_n$, i. e., for the number $\xi_n=\min \{ \xi(S):   S\subset Q_n \}.$ In particular, this value and its analogues have applications in estimates for the norms of interpolation projectors. Previously the first author proved some general estimates of $\xi_n$. Always $n\leq\xi_n< n+1$. If there exists an Hadamard matrix of order $n+1$, then $\xi_n=n$. The best known general upper estimate has the form $\xi_n\leq \frac{n^2-3}{n-1}$ $(n>2)$. There exists a constant $c>0$ not depending on $n$ such that, for any simplex $S\subset Q_n$ of maximum volume, inequalities $c\xi(S)\leq \xi_n\leq \xi(S)$ take place. It motivates the use of maximum volume simplices in upper estimates of $\xi_n$. The set of vertices of such a simplex can be consructed with application of maximum $0/1$-determinant of order $n$ or maximum $-1/1$-determinant of order $n+1$. In the paper, we compute absorption indices of maximum volume simplices in $Q_n$ constructed from known maximum $-1/1$-determinants via a special procedure. For some $n$, this approach makes it possible to lower theoretical upper bounds of $\xi_n$. Also we give best known upper estimates of $\xi_n$ for $n\leq 118$.

Keywords: $n$-dimensional simplex, $n$-dimensional cube, homothety, absorption index, interpolation, numerical methods.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 1.10160.2017/5.1
This work was carried out within the framework of the state programme of the Ministry of Education and Science of the Russian Federation, project № 1.10160.2017/5.1.


DOI: https://doi.org/10.18255/1818-1015-2018-1-140-150

Full text: PDF file (655 kB)
References: PDF file   HTML file

UDC: 514.17+517.51+519.6
Received: 20.07.2017

Citation: M. V. Nevskii, A. Yu. Ukhalov, “On minimal absorption index for an $n$-dimensional simplex”, Model. Anal. Inform. Sist., 25:1 (2018), 140–150

Citation in format AMSBIB
\Bibitem{NevUkh18}
\by M.~V.~Nevskii, A.~Yu.~Ukhalov
\paper On minimal absorption index for an $n$-dimensional simplex
\jour Model. Anal. Inform. Sist.
\yr 2018
\vol 25
\issue 1
\pages 140--150
\mathnet{http://mi.mathnet.ru/mais617}
\crossref{https://doi.org/10.18255/1818-1015-2018-1-140-150}
\elib{http://elibrary.ru/item.asp?id=32482547}


Linking options:
  • http://mi.mathnet.ru/eng/mais617
  • http://mi.mathnet.ru/eng/mais/v25/i1/p140

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Nevskii, A. Yu. Ukhalov, “On optimal interpolation by linear functions on an $n$-dimensional cube”, Automatic Control and Computer Sciences, 52:7 (2018), 828–842  mathnet  crossref  crossref  elib
    2. M. V. Nevskii, “O nekotorykh zadachakh dlya simpleksa i shara v ${\mathbb R}^n$”, Model. i analiz inform. sistem, 25:6 (2018), 680–691  mathnet  crossref
  • Моделирование и анализ информационных систем
    Number of views:
    This page:122
    Full text:42
    References:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020