  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Impact factor Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Model. Anal. Inform. Sist.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Model. Anal. Inform. Sist., 2018, Volume 25, Number 3, Pages 291–311 (Mi mais629)  Computational Geometry

On optimal interpolation by linear functions on an $n$-dimensional cube

M. V. Nevskii, A. Yu. Ukhalov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003, Russian Federation

Abstract: Let $n\in{\mathbb N}$, and let $Q_n$ be the unit cube $[0,1]^n$. By $C(Q_n)$ we denote the space of continuous functions $f:Q_n\to{\mathbb R}$ with the norm $\|f\|_{C(Q_n)}:=\max\limits_{x\in Q_n}|f(x)|,$ by $\Pi_1({\mathbb R}^n)$ — the set of polynomials of $n$ variables of degree $\leq 1$ (or linear functions). Let $x^{(j)},$ $1\leq j\leq n+1,$ be the vertices of $n$-dimnsional nondegenerate simplex $S\subset Q_n$. An interpolation projector $P:C(Q_n)\to \Pi_1({\mathbb R}^n)$ corresponding to the simplex $S$ is defined by equalities $Pf(x^{(j)})= f(x^{(j)})$. The norm of $P$ as an operator from $C(Q_n)$ to $C(Q_n)$ may be calculated by the formula $\|P\|=\max\limits_{x\in\mathrm{ver}(Q_n)} \sum\limits_{j=1}^{n+1} |\lambda_j(x)|$. Here $\lambda_j$ are the basic Lagrange polynomials with respect to $S,$ $\mathrm{ver}(Q_n)$ is the set of vertices of $Q_n$. Let us denote by $\theta_n$ the minimal possible value of $\|P\|$. Earlier, the first author proved various relations and estimates for values $\|P\|$ and $\theta_n$, in particular, having geometric character. The equivalence $\theta_n\asymp \sqrt{n}$ takes place. For example, the appropriate, according to dimension $n$, inequalities may be written in the form $\frac{1}{4}\sqrt{n}$ $<\theta_n$ $<3\sqrt{n}$. If the nodes of the projector $P^*$ coincide with vertices of an arbitrary simplex with maximum possible volume, we have $\|P^*\|\asymp\theta_n$. When an Hadamard matrix of order $n+1$ exists, holds $\theta_n\leq\sqrt{n+1}$. In the paper, we give more precise upper bounds of numbers $\theta_n$ for $21\leq n \leq 26$. These estimates were obtained with the application of maximum volume simplices in the cube. For constructing such simplices, we utilize maximum determinants containing the elements $\pm 1$. Also, we systematize and comment the best nowaday upper and low estimates of numbers $\theta_n$ for a concrete $n$.

Keywords: $n$-dimensional simplex, $n$-dimensional cube, interpolation, projector, norm, numerical methods.

 Funding Agency Grant Number Ministry of Education and Science of the Russian Federation 1.12873.2018/12.1 This work was carried out within the framework of the state programme of the Ministry of Education and Science of the Russian Federation, project № 1.12873.2018/12.1.

DOI: https://doi.org/10.18255/1818-1015-2018-3-291-311  Full text: PDF file (767 kB) References: PDF file   HTML file

English version:
Automatic Control and Computer Sciences, 2018, 52:7, 828–842 UDC: 514.17+517.51+519.6

Citation: M. V. Nevskii, A. Yu. Ukhalov, “On optimal interpolation by linear functions on an $n$-dimensional cube”, Model. Anal. Inform. Sist., 25:3 (2018), 291–311; Automatic Control and Computer Sciences, 52:7 (2018), 828–842 Citation in format AMSBIB
\Bibitem{NevUkh18} \by M.~V.~Nevskii, A.~Yu.~Ukhalov \paper On optimal interpolation by linear functions on an $n$-dimensional cube \jour Model. Anal. Inform. Sist. \yr 2018 \vol 25 \issue 3 \pages 291--311 \mathnet{http://mi.mathnet.ru/mais629} \crossref{https://doi.org/10.18255/1818-1015-2018-3-291-311} \elib{http://elibrary.ru/item.asp?id=35144412} \transl \jour Automatic Control and Computer Sciences \yr 2018 \vol 52 \issue 7 \pages 828--842 \crossref{https://doi.org/10.3103%2FS0146411618070283} 

• http://mi.mathnet.ru/eng/mais629
• http://mi.mathnet.ru/eng/mais/v25/i3/p291

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. M. V. Nevskii, A. Yu. Ukhalov, “Lineinaya interpolyatsiya na evklidovom share v ${\mathbb R}^n$”, Model. i analiz inform. sistem, 26:2 (2019), 279–296  2. M. V. Nevskii, “Geometricheskie otsenki pri interpolyatsii na $n$-mernom share”, Model. i analiz inform. sistem, 26:3 (2019), 441–449  •  Contact us: math-net2020_02 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2020