RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2018, Volume 25, Number 3, Pages 291–311 (Mi mais629)  

This article is cited in 2 scientific papers (total in 2 papers)

Computational Geometry

On optimal interpolation by linear functions on an $n$-dimensional cube

M. V. Nevskii, A. Yu. Ukhalov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003, Russian Federation

Abstract: Let $n\in{\mathbb N}$, and let $Q_n$ be the unit cube $[0,1]^n$. By $C(Q_n)$ we denote the space of continuous functions $f:Q_n\to{\mathbb R}$ with the norm $\|f\|_{C(Q_n)}:=\max\limits_{x\in Q_n}|f(x)|,$ by $\Pi_1({\mathbb R}^n)$ — the set of polynomials of $n$ variables of degree $\leq 1$ (or linear functions). Let $x^{(j)},$ $1\leq j\leq n+1,$ be the vertices of $n$-dimnsional nondegenerate simplex $S\subset Q_n$. An interpolation projector $P:C(Q_n)\to \Pi_1({\mathbb R}^n)$ corresponding to the simplex $S$ is defined by equalities $Pf(x^{(j)})= f(x^{(j)})$. The norm of $P$ as an operator from $C(Q_n)$ to $C(Q_n)$ may be calculated by the formula $\|P\|=\max\limits_{x\in\mathrm{ver}(Q_n)} \sum\limits_{j=1}^{n+1} |\lambda_j(x)|$. Here $\lambda_j$ are the basic Lagrange polynomials with respect to $S,$ $\mathrm{ver}(Q_n)$ is the set of vertices of $Q_n$. Let us denote by $\theta_n$ the minimal possible value of $\|P\|$. Earlier, the first author proved various relations and estimates for values $\|P\|$ and $\theta_n$, in particular, having geometric character. The equivalence $\theta_n\asymp \sqrt{n}$ takes place. For example, the appropriate, according to dimension $n$, inequalities may be written in the form $\frac{1}{4}\sqrt{n}$ $<\theta_n$ $<3\sqrt{n}$. If the nodes of the projector $P^*$ coincide with vertices of an arbitrary simplex with maximum possible volume, we have $\|P^*\|\asymp\theta_n$. When an Hadamard matrix of order $n+1$ exists, holds $\theta_n\leq\sqrt{n+1}$. In the paper, we give more precise upper bounds of numbers $\theta_n$ for $21\leq n \leq 26$. These estimates were obtained with the application of maximum volume simplices in the cube. For constructing such simplices, we utilize maximum determinants containing the elements $\pm 1$. Also, we systematize and comment the best nowaday upper and low estimates of numbers $\theta_n$ for a concrete $n$.

Keywords: $n$-dimensional simplex, $n$-dimensional cube, interpolation, projector, norm, numerical methods.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 1.12873.2018/12.1
This work was carried out within the framework of the state programme of the Ministry of Education and Science of the Russian Federation, project № 1.12873.2018/12.1.


DOI: https://doi.org/10.18255/1818-1015-2018-3-291-311

Full text: PDF file (767 kB)
References: PDF file   HTML file

English version:
Automatic Control and Computer Sciences, 2018, 52:7, 828–842

UDC: 514.17+517.51+519.6
Received: 11.12.2017

Citation: M. V. Nevskii, A. Yu. Ukhalov, “On optimal interpolation by linear functions on an $n$-dimensional cube”, Model. Anal. Inform. Sist., 25:3 (2018), 291–311; Automatic Control and Computer Sciences, 52:7 (2018), 828–842

Citation in format AMSBIB
\Bibitem{NevUkh18}
\by M.~V.~Nevskii, A.~Yu.~Ukhalov
\paper On optimal interpolation by linear functions on an $n$-dimensional cube
\jour Model. Anal. Inform. Sist.
\yr 2018
\vol 25
\issue 3
\pages 291--311
\mathnet{http://mi.mathnet.ru/mais629}
\crossref{https://doi.org/10.18255/1818-1015-2018-3-291-311}
\elib{http://elibrary.ru/item.asp?id=35144412}
\transl
\jour Automatic Control and Computer Sciences
\yr 2018
\vol 52
\issue 7
\pages 828--842
\crossref{https://doi.org/10.3103%2FS0146411618070283}


Linking options:
  • http://mi.mathnet.ru/eng/mais629
  • http://mi.mathnet.ru/eng/mais/v25/i3/p291

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Nevskii, A. Yu. Ukhalov, “Lineinaya interpolyatsiya na evklidovom share v ${\mathbb R}^n$”, Model. i analiz inform. sistem, 26:2 (2019), 279–296  mathnet  crossref
    2. M. V. Nevskii, “Geometricheskie otsenki pri interpolyatsii na $n$-mernom share”, Model. i analiz inform. sistem, 26:3 (2019), 441–449  mathnet  crossref
  • Моделирование и анализ информационных систем
    Number of views:
    This page:77
    Full text:28
    References:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020