RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2019, Volume 26, Number 2, Pages 279–296 (Mi mais679)  

This article is cited in 1 scientific paper (total in 1 paper)

Computing methodologies and applications

Linear interpolation on a Euclidean ball in ${\mathbb R}^n$

M. V. Nevskii, A. Yu. Ukhalov

P.G. Demidov Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150003, Russian Federation

Abstract: For $x^{(0)}\in{\mathbb R}^n, R>0$, by $B=B(x^{(0)};R)$ we denote a Euclidean ball in ${\mathbb R}^n$ given by the inequality $\|x-x^{(0)}\|\leq R$, $\|x\|:=(\sum_{i=1}^n x_i^2)^{1/2}$. Put $B_n:=B(0,1)$. We mean by $C(B)$ the space of continuous functions $f:B\to{\mathbb R}$ with the norm $\|f\|_{C(B)}:=\max_{x\in B}|f(x)|$ and by $\Pi_1({\mathbb R}^n)$ the set of polynomials in $n$ variables of degree $\leq 1$, i. e. linear functions on ${\mathbb R}^n$. Let $x^{(1)}, \ldots, x^{(n+1)}$ be the vertices of $n$-dimensional nondegenerate simplex $S\subset B$. The interpolation projector $P:C(B)\to \Pi_1({\mathbb R}^n)$ corresponding to $S$ is defined by the equalities $Pf(x^{(j)})=
f(x^{(j)}).$
Denote by $\|P\|_B$ the norm of $P$ as an operator from $C(B)$ into $C(B)$. Let us define $\theta_n(B)$ as minimal value of $\|P\|_B$ under the condition $x^{(j)}\in B$. In the paper, we obtain the formula to compute $\|P\|_B$ making use of $x^{(0)}$, $R$, and coefficients of basic Lagrange polynomials of $S$. In more details we study the case when $S$ is a regular simplex inscribed into $B_n$. In this situation, we prove that $\|P\|_{B_n}=\max\{\psi(a),\psi(a+1)\},$ where $\psi(t)=\frac{2\sqrt{n}}{n+1}(t(n+1-t))^{1/2}+ |1-\frac{2t}{n+1}|$ $(0\leq t\leq n+1)$ and integer $a$ has the form $a=\lfloor\frac{n+1}{2}-\frac{\sqrt{n+1}}{2}\rfloor.$ For this projector, $\sqrt{n}\leq\|P\|_{B_n}\leq\sqrt{n+1}$. The equality $\|P\|_{B_n}=\sqrt{n+1}$ takes place if and only if $\sqrt{n+1}$ is an integer number. We give the precise values of $\theta_n(B_n)$ for $1\leq n\leq 4$. To supplement theoretical results we present computational data. We also discuss some other questions concerning interpolation on a Euclidean ball.

Keywords: $n$-dimensional simplex, $n$-dimensional ball, linear interpolation, projector, norm.

DOI: https://doi.org/10.18255/1818-1015-279-296

Full text: PDF file (778 kB)
References: PDF file   HTML file

UDC: 514.17+517.51+519.6
Received: 08.12.2018
Revised: 21.02.2019
Accepted:25.02.2019

Citation: M. V. Nevskii, A. Yu. Ukhalov, “Linear interpolation on a Euclidean ball in ${\mathbb R}^n$”, Model. Anal. Inform. Sist., 26:2 (2019), 279–296

Citation in format AMSBIB
\Bibitem{NevUkh19}
\by M.~V.~Nevskii, A.~Yu.~Ukhalov
\paper Linear interpolation on a Euclidean ball in ${\mathbb R}^n$
\jour Model. Anal. Inform. Sist.
\yr 2019
\vol 26
\issue 2
\pages 279--296
\mathnet{http://mi.mathnet.ru/mais679}
\crossref{https://doi.org/10.18255/1818-1015-279-296}


Linking options:
  • http://mi.mathnet.ru/eng/mais679
  • http://mi.mathnet.ru/eng/mais/v26/i2/p279

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Nevskii, “Geometricheskie otsenki pri interpolyatsii na $n$-mernom share”, Model. i analiz inform. sistem, 26:3 (2019), 441–449  mathnet  crossref
  • Моделирование и анализ информационных систем
    Number of views:
    This page:58
    Full text:22
    References:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020