RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Model. Anal. Inform. Sist., 2008, Volume 15, Number 2, Pages 36–45 (Mi mais96)  

This article is cited in 2 scientific papers (total in 2 papers)

Lang-Kobayashi model dynamics features in the critical case

D. V. Glazkov

Yaroslavl State University

Abstract: We investigate the stability of periodic solutions of Lang-Kobayashi (LK) system in the critical case of infinite dimension. We construct and study special evolutional equations playing the role of normal forms. We compare our results concerning the dynamics of LK model with those that are already known.

Full text: PDF file (476 kB)
References: PDF file   HTML file
UDC: 517.929

Citation: D. V. Glazkov, “Lang-Kobayashi model dynamics features in the critical case”, Model. Anal. Inform. Sist., 15:2 (2008), 36–45

Citation in format AMSBIB
\Bibitem{Gla08}
\by D.~V.~Glazkov
\paper Lang-Kobayashi model dynamics features in the critical case
\jour Model. Anal. Inform. Sist.
\yr 2008
\vol 15
\issue 2
\pages 36--45
\mathnet{http://mi.mathnet.ru/mais96}


Linking options:
  • http://mi.mathnet.ru/eng/mais96
  • http://mi.mathnet.ru/eng/mais/v15/i2/p36

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. V. Glazkov, S. A. Kaschenko, “Lokalnaya dinamika uravneniya s bolshim zapazdyvaniem v okrestnosti avtomodelnogo tsikla”, Model. i analiz inform. sistem, 17:3 (2010), 38–47  mathnet
    2. D. V. Glazkov, “Lokalnaya dinamika uravneniya s silno zapazdyvayuschei obratnoi svyazyu”, Model. i analiz inform. sistem, 18:1 (2011), 75–85  mathnet
  • Моделирование и анализ информационных систем
    Number of views:
    This page:220
    Full text:83
    References:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020