RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Math. Nachr., 2016, Volume 289, Issue 17, Pages 2133–2146 (Mi matna4)  

Conformal spectral stability estimates for the Neumann Laplacian

V. I. Burenkovab, V. Gol'dshteinc, A. Ukhlovc

a Peoples' Friendship University of Russia, Moscow, 6 Mikluho-Maklay St., Russia
b Steklov Mathematical Institute, Moscow, 8 Gubkin St., Russia
c Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel

Abstract: We study the eigenvalue problem for the Neumann-–Laplace operator in conformal regular planar domains $\Omega\subset\mathbb C$. Conformal regular domains support the Poincaré-–Sobolev inequality and this allows us to estimate the variation of the eigenvalues of the Neumann Laplacian upon domain perturbation via energy type integrals. Boundaries of such domains can have any Hausdorff dimension between one and two.

Funding Agency Grant Number
United States - Israel Binational Science Foundation (BSF) 2014055
Funded by United States-Israel Binational Science Foundation. Grant Number: 2014055


DOI: https://doi.org/10.1002/mana.201500439


Bibliographic databases:

Received: 20.11.2015
Accepted:18.02.2017
Language:

Linking options:
  • http://mi.mathnet.ru/eng/matna4

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:75

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019