RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Главная страница
О проекте
Программное обеспечение
Классификаторы
Полезные ссылки
Пользовательское
соглашение

Поиск публикаций
Поиск ссылок

RSS
Текущие выпуски
Архивные выпуски
Что такое RSS






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Math. Nachr., 2016, том 289, выпуск 17, страницы 2133–2146 (Mi matna4)  

Conformal spectral stability estimates for the Neumann Laplacian

V. I. Burenkovab, V. Gol'dshteinc, A. Ukhlovc

a Peoples' Friendship University of Russia, Moscow, 6 Mikluho-Maklay St., Russia
b Steklov Mathematical Institute, Moscow, 8 Gubkin St., Russia
c Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel

Аннотация: We study the eigenvalue problem for the Neumann-–Laplace operator in conformal regular planar domains $\Omega\subset\mathbb C$. Conformal regular domains support the Poincaré-–Sobolev inequality and this allows us to estimate the variation of the eigenvalues of the Neumann Laplacian upon domain perturbation via energy type integrals. Boundaries of such domains can have any Hausdorff dimension between one and two.

Финансовая поддержка Номер гранта
United States - Israel Binational Science Foundation (BSF) 2014055
Funded by United States-Israel Binational Science Foundation. Grant Number: 2014055


DOI: https://doi.org/10.1002/mana.201500439


Реферативные базы данных:

Тип публикации: Статья
Поступила в редакцию: 20.11.2015
Принята в печать:18.02.2017
Язык публикации: английский

Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/matna4

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:69

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019