RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Teor. Igr Pril., 2016, Volume 8, Issue 2, Pages 58–90 (Mi mgta179)  

This article is cited in 1 scientific paper (total in 1 paper)

Equilibrium trajectories in dynamical bimatrix games with average integral payoff functionals

Nikolay A. Krasovskiia, Alexander M. Tarasyevb

a Ural State Agrarian University
b Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: Models of evolutionary nonzero-sum games are considered on the infinite time interval. Methods of differential games theory are used for the analysis of game interactions between two groups of participants. It is assumed, that participants in groups are subject to control through signals for the behavior change. Payoffs of coalitions are determined as average integral functionals on the infinite horizon. The problem of constructing a dynamical Nash equilibrium is posed for the considered evolutionary game. Ideas and approaches of non-antagonistic differential games are applied for the determination of the Nash equilibrium solutions. The results are based on dynamic constructions and methods of evolutionary games. The great attention is paid to the formation of the dynamical Nash equilibrium with players strategies, that maximize the corresponding payoff functions and have the guaranteed properties according to the minimax approach. The application of the minimax approach for constructing optimal control strategies synthesizes trajectories of the dynamical Nash equilibrium that provide better results in comparison to static solutions and evolutionary models with the replicator dynamics. The dynamical Nash equilibrium trajectories for evolutionary games with the average integral quality functionals are compared with trajectories for evolutionary games based on the global terminal quality functionals on the infinite horizon.

Keywords: dynamical bimatrix games, average integral payoffs, characteristics of Hamilton–Jacobi equations, equilibrium trajectories.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00486_а


Full text: PDF file (501 kB)
References: PDF file   HTML file

English version:
Automation and Remote Control, 2018, 79:6, 1148–1167

Bibliographic databases:

Document Type: Article
UDC: 517.977
BBK: 22.1

Citation: Nikolay A. Krasovskii, Alexander M. Tarasyev, “Equilibrium trajectories in dynamical bimatrix games with average integral payoff functionals”, Mat. Teor. Igr Pril., 8:2 (2016), 58–90; Autom. Remote Control, 79:6 (2018), 1148–1167

Citation in format AMSBIB
\Bibitem{KraTar16}
\by Nikolay~A.~Krasovskii, Alexander~M.~Tarasyev
\paper Equilibrium trajectories in dynamical bimatrix games with average integral payoff functionals
\jour Mat. Teor. Igr Pril.
\yr 2016
\vol 8
\issue 2
\pages 58--90
\mathnet{http://mi.mathnet.ru/mgta179}
\transl
\jour Autom. Remote Control
\yr 2018
\vol 79
\issue 6
\pages 1148--1167
\crossref{https://doi.org/10.1134/S0005117918060139}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000435588100013}


Linking options:
  • http://mi.mathnet.ru/eng/mgta179
  • http://mi.mathnet.ru/eng/mgta/v8/i2/p58

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. A. Krasovskii, A. M. Tarasev, “Asimptoticheskoe povedenie reshenii v dinamicheskikh bimatrichnykh igrakh s diskontirovannymi indeksami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:2 (2017), 193–209  mathnet  crossref  elib
  • Математическая теория игр и её приложения
    Number of views:
    This page:176
    Full text:52
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019