Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 1989, Volume 1, Number 4, Pages 110–121 (Mi mm2545)  

Mathematical models of phenomena and processes

The modelling of preferences and the determination of compromise settlements for two persons making decision with different vector criteria

V. I. Borzenko, A. V. Sarychev, M. V. Shubina


Full text: PDF file (1230 kB)

Bibliographic databases:
UDC: 62-50.519.8
Received: 22.11.1988
Revised: 15.12.1988

Citation: V. I. Borzenko, A. V. Sarychev, M. V. Shubina, “The modelling of preferences and the determination of compromise settlements for two persons making decision with different vector criteria”, Matem. Mod., 1:4 (1989), 110–121

Citation in format AMSBIB
\Bibitem{BorSarShu89}
\by V.~I.~Borzenko, A.~V.~Sarychev, M.~V.~Shubina
\paper The modelling of preferences and the determination of compromise settlements for two persons making decision with different vector criteria
\jour Matem. Mod.
\yr 1989
\vol 1
\issue 4
\pages 110--121
\mathnet{http://mi.mathnet.ru/mm2545}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1026387}
\zmath{https://zbmath.org/?q=an:0974.90512}


Linking options:
  • http://mi.mathnet.ru/eng/mm2545
  • http://mi.mathnet.ru/eng/mm/v1/i4/p110

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математическое моделирование
    Number of views:
    This page:550
    Full text:220
    References:1
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022