RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2004, Volume 16, Number 7, Pages 117–128 (Mi mm260)  

This article is cited in 8 scientific papers (total in 8 papers)

Iterative algorithms for higher order finite element schemes

V. T. Zhukova, O. B. Feodoritovaa, D. P. Youngb

a M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
b The Boeing Company

Abstract: An iterative method for the solution of partial differential equation by higher order finite element method (FEM) on unstructured grids is presented. The algorithms corresponding to lagrangean and hierarchical FEM bases are designed and studied. The results of numerical experiments for a set of the problems (diffusion, convection-diffusion, Euler, Navier–Stokes) are given to show capability of the algorithms.

Full text: PDF file (1512 kB)
References: PDF file   HTML file

Bibliographic databases:
Received: 03.09.2003

Citation: V. T. Zhukov, O. B. Feodoritova, D. P. Young, “Iterative algorithms for higher order finite element schemes”, Matem. Mod., 16:7 (2004), 117–128

Citation in format AMSBIB
\Bibitem{ZhuFeoYou04}
\by V.~T.~Zhukov, O.~B.~Feodoritova, D.~P.~Young
\paper Iterative algorithms for higher order finite element schemes
\jour Matem. Mod.
\yr 2004
\vol 16
\issue 7
\pages 117--128
\mathnet{http://mi.mathnet.ru/mm260}
\zmath{https://zbmath.org/?q=an:1058.65106}


Linking options:
  • http://mi.mathnet.ru/eng/mm260
  • http://mi.mathnet.ru/eng/mm/v16/i7/p117

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. T. Zhukov, O. B. Feodoritova, “Mnogosetochnyi metod dlya nestrukturnykh konechno-elementnykh diskretizatsii uravnenii aerodinamiki”, Preprinty IPM im. M. V. Keldysha, 2008, 005, 31 pp.  mathnet
    2. A. V. Volkov, “Application of the multigrid approach to the solution of 3D Navier–Stokes equations on hexahedral grids by the Galerkin method with discontinuous basis functions”, Comput. Math. Math. Phys., 50:3 (2010), 495–508  mathnet  crossref  mathscinet  adsnasa  isi
    3. V. T. Zhukov, O. B. Feodoritova, “Multigrid for finite-element discretizations of the equations of aerodynamics”, Math. Models Comput. Simul., 3:4 (2011), 446–456  mathnet  crossref  mathscinet
    4. Zhukov V.T., Novikova N.D., Feodoritova O.B., “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. chast i. osnovnye elementy algoritma”, Preprinty IPM im. M.V. Keldysha, 2012, no. 30, 1–32  zmath  elib
    5. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. \Chast I. Osnovnye elementy algoritma”, Preprinty IPM im. M. V. Keldysha, 2012, 030, 32 pp.  mathnet
    6. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. Anizotropnaya diffuziya”, Preprinty IPM im. M. V. Keldysha, 2012, 076, 36 pp.  mathnet
    7. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Parallel multigrid method for solving elliptic equations”, Math. Models Comput. Simul., 6:4 (2014), 425–434  mathnet  crossref
    8. V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Multigrid method for elliptic equations with anisotropic discontinuous coefficients”, Comput. Math. Math. Phys., 55:7 (2015), 1150–1163  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Математическое моделирование
    Number of views:
    This page:1553
    Full text:230
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020