RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2008, Volume 20, Number 8, Pages 48–60 (Mi mm2674)  

This article is cited in 9 scientific papers (total in 9 papers)

Finite-difference method for computation of the gas dynamics equations with artificial viscosity

I. V. Popov, I. V. Fryazinov

Institute for Mathematical Modelling, Russian Academy of Sciences

Abstract: Finite-difference method for computation of the gas dynamics equations with adaptive artificial viscosity (AAV) is proposed. It is homogeneous, monotonous finite-difference scheme of the second order approximation on time and space variables outside of areas of breaks and compression waves. The paper presents new way of introduction of artificial viscosity. It is investigated stability of the scheme. Test calculations of contact breaks movement, shock waves and disintegration of breaks were performed.

Full text: PDF file (317 kB)
References: PDF file   HTML file

English version:
Mathematical Models and Computer Simulations, 2009, 1:4, 493–502

Bibliographic databases:

Received: 16.10.2007

Citation: I. V. Popov, I. V. Fryazinov, “Finite-difference method for computation of the gas dynamics equations with artificial viscosity”, Matem. Mod., 20:8 (2008), 48–60; Math. Models Comput. Simul., 1:4 (2009), 493–502

Citation in format AMSBIB
\Bibitem{PopFry08}
\by I.~V.~Popov, I.~V.~Fryazinov
\paper Finite-difference method for computation of the gas dynamics equations with artificial viscosity
\jour Matem. Mod.
\yr 2008
\vol 20
\issue 8
\pages 48--60
\mathnet{http://mi.mathnet.ru/mm2674}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2477310}
\zmath{https://zbmath.org/?q=an:05493351}
\transl
\jour Math. Models Comput. Simul.
\yr 2009
\vol 1
\issue 4
\pages 493--502
\crossref{https://doi.org/10.1134/S2070048209040073}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84929081269}


Linking options:
  • http://mi.mathnet.ru/eng/mm2674
  • http://mi.mathnet.ru/eng/mm/v20/i8/p48

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. V. Popov, I. V. Fryazinov, “Adaptive artificial viscosity for gas dynamics for the Euler variables in Cartesian coordinates”, Math. Models Comput. Simul., 2:4 (2010), 429–442  mathnet  crossref  mathscinet  zmath
    2. I. V. Popov, I. V. Fryazinov, “Calculations of bidimentional test problems by a method of adaptive artificial viscosity”, Math. Models Comput. Simul., 2:6 (2010), 724–732  mathnet  crossref
    3. I. V. Popov, I. V. Fryazinov, “Method adaptive artificial viscosity”, Math. Models Comput. Simul., 3:1 (2011), 18–24  mathnet  crossref  mathscinet
    4. I. V. Popov, I. V. Fryazinov, “About the new choice of adaptive artificial viscosity”, Math. Models Comput. Simul., 3:4 (2011), 411–418  mathnet  crossref  mathscinet
    5. I. V. Popov, I. V. Fryazinov, “Finite-difference method for computation of the 3-D gas dynamics equations with artificial viscosity”, Math. Models Comput. Simul., 3:5 (2011), 587–595  mathnet  crossref  mathscinet
    6. I. V. Popov, I. V. Fryazinov, “Method of adaptive artificial viscosity for the equations of gas dynamics on triangular and tetrahedral grids”, Math. Models Comput. Simul., 5:1 (2013), 50–62  mathnet  crossref  mathscinet  elib
    7. I. V. Popov, I. V. Fryazinov, “Method of adaptive artificial viscosity for solving the Navier–Stokes equations”, Comput. Math. Math. Phys., 55:8 (2015), 1324–1329  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    8. D. V. Sadin, “Skhemy s nastraivaemymi dissipativnymi svoistvami dlya chislennogo modelirovaniya techenii gaza i gazovzvesei”, Matem. modelirovanie, 29:12 (2017), 89–104  mathnet  elib
    9. A. V. Koldoba, G. V. Ustyugova, “Raznostnaya skhema s analizatorom simmetrii dlya uravnenii gazovoi dinamiki”, Matem. modelirovanie, 31:7 (2019), 45–57  mathnet  crossref  elib
  • Математическое моделирование
    Number of views:
    This page:601
    Full text:197
    References:48
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020