General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Matem. Mod.:

Personal entry:
Save password
Forgotten password?

Matem. Mod., 2005, Volume 17, Number 10, Pages 47–78 (Mi mm2804)  

This article is cited in 7 scientific papers (total in 7 papers)

About an opportunity of synergetic birth of mesoscale coherent structures in the macroscopic theory of a developed turbulence

A. V. Kolesnichenko

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences

Abstract: The purpose of paper is the development of the continuum theory of a structured turbulence of shift fluxions of a fluid simulated total two of interpenetrative continuums, from which one first falls into to an average field of a turbulent motion, and second – to the turbulent time-space chaos including and band of mesoscale coherent structures, localized in space. It is considered, that the mesoscale structures at magnification supercriticality are generated by small-scale vortex formations, which one in two-level model of a turbulence are featured in padding interior parameters of chaos, for example, generalized angular velocities describing a vorticities of a pulsation hydrodynamic field. The opportunity of synergetic birth of mesoscale coherent structures from turbulent chaos (far from complete chaos of athermodynamic equilibrium) is considered at the expense of a phase locking concerning large small-scale vortexes (maximum oscillations inside some spectral interval) at the presence of a noise, connect with “thermal” structure of a vortex continuum. The similar mechanism of forming and evolution of coherent structures in thermodynamical open subsystem of turbulent chaos is interpreted from the point of view of the theory of dynamic systems. The attempted examination is aimed at development of a series of representative hydrodynamic models of space environments, including evolution of a solar System, appearance of turbulent transport on planets and in their atmospheres, problem of an ecology etc. It is prolongation of the stochastics-thermodynamic approach to synergetic exposition of a structured turbulence of astro-geophysical systems developed by the writer in a series of articles [1–3].

Full text: PDF file (575 kB)
References: PDF file   HTML file

Bibliographic databases:
Received: 12.04.2004

Citation: A. V. Kolesnichenko, “About an opportunity of synergetic birth of mesoscale coherent structures in the macroscopic theory of a developed turbulence”, Matem. Mod., 17:10 (2005), 47–78

Citation in format AMSBIB
\by A.~V.~Kolesnichenko
\paper About an opportunity of synergetic birth of mesoscale coherent structures in the macroscopic theory of a~developed turbulence
\jour Matem. Mod.
\yr 2005
\vol 17
\issue 10
\pages 47--78

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Kolesnichenko, M. Ya. Marov, “Rol gidrodinamicheskoi spiralnosti v evolyutsii protoplanetnogo turbulentnogo diska”, Matem. modelirovanie, 20:10 (2008), 99–125  mathnet  mathscinet  zmath
    2. Saikhanov M.B., “Kineticheskoe modelirovanie dissipativnykh struktur”, Nelineinyi mir, 11:1 (2013), 044–050  elib
    3. A. V. Kolesnichenko, “K modelirovaniyu szhimaemoi magnitogidrodinamicheskoi turbulentnosti akkretsionnogo protoplanetnogo diska”, Preprinty IPM im. M. V. Keldysha, 2014, 066, 47 pp.  mathnet
    4. A. V. Kolesnichenko, “Termodinamicheskii vyvod drobnogo uravneniya Fokkera–Planka dlya fraktalnogo turbulentnogo khaosa so stepennoi pamyatyu”, Preprinty IPM im. M. V. Keldysha, 2014, 072, 32 pp.  mathnet
    5. A. V. Kolesnichenko, “Termodinamicheskii vyvod novoi formy sootnoshenii Stefana–Maksvella i algebraicheskikh uravnenii dlya koeffitsientov perenosa, sootnesennykh s diffuzionno-teplovymi protsessami v mnogokomponentnoi sploshnoi srede”, Preprinty IPM im. M. V. Keldysha, 2014, 091, 47 pp.  mathnet
    6. N. N. Fimin, V. M. Chechetkin, “Kogerentnye gidrodinamicheskie struktury i vikhrevaya dinamika”, Preprinty IPM im. M. V. Keldysha, 2015, 001, 35 pp.  mathnet
    7. O. M. Belotserkovskii, N. N. Fimin, V. M. Chechetkin, “Coherent hydrodynamic structures and vortex dynamics”, Math. Models Comput. Simul., 8:2 (2016), 135–148  mathnet  crossref  mathscinet  elib
  • Математическое моделирование
    Number of views:
    This page:407
    Full text:117
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019