|
This article is cited in 14 scientific papers (total in 14 papers)
About one choice of essentially non-oscillatory high occuracy order difference scheme for systems of conservation laws
M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, V. S. Chevanin Institute for Mathematical Modelling, Russian Academy of Sciences
Abstract:
Version of essentially non-oscillatory high occuracy order difference scheme for systems of conservation laws, based on minimization for norm of interpolation polynomial deviation from the cell averages was suggested in this paper. Such choice can give more monotonous solution in comparision with traditional ENO and WENO schemes of corresponding occuracy order, that was confirmed by results of numerical calculation for model problems.
Full text:
PDF file (336 kB)
References:
PDF file
HTML file
English version:
Mathematical Models and Computer Simulations, 2010, 2:3, 304–316
Bibliographic databases:
Received: 06.02.2009
Citation:
M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, V. S. Chevanin, “About one choice of essentially non-oscillatory high occuracy order difference scheme for systems of conservation laws”, Matem. Mod., 21:11 (2009), 19–32; Math. Models Comput. Simul., 2:3 (2010), 304–316
Citation in format AMSBIB
\Bibitem{LadNekTis09}
\by M.~E.~Ladonkina, O.~A.~Neklyudova, V.~F.~Tishkin, V.~S.~Chevanin
\paper About one choice of essentially non-oscillatory high occuracy order difference scheme for systems of conservation laws
\jour Matem. Mod.
\yr 2009
\vol 21
\issue 11
\pages 19--32
\mathnet{http://mi.mathnet.ru/mm2900}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2649944}
\zmath{https://zbmath.org/?q=an:05769293}
\transl
\jour Math. Models Comput. Simul.
\yr 2010
\vol 2
\issue 3
\pages 304--316
\crossref{https://doi.org/10.1134/S207004821003004X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860548849}
Linking options:
http://mi.mathnet.ru/eng/mm2900 http://mi.mathnet.ru/eng/mm/v21/i11/p19
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
B. V. Rogov, M. N. Mikhailovskaya, “The monotonic bicompact schemes for a linear transfer equation”, Math. Models Comput. Simul., 4:1 (2012), 92–100
-
Rogov B.V., Mikhailovskaya M.N., “Monotone bicompact schemes for a linear advection equation”, Dokl. Math., 83:1 (2011), 121–125
-
V. S. Chevanin, “Chislennoe modelirovanie zadach turbulentnogo peremeshivaniya na osnove kvazimonotonnoi skhemy povyshennogo poryadka tochnosti”, Preprinty IPM im. M. V. Keldysha, 2011, 032, 28 pp.
-
V. S. Chevanin, “Chislennoe modelirovanie razvitiya gidrodinamicheskikh neustoichivostei na mnogoprotsessornykh sistemakh”, Matem. modelirovanie, 24:2 (2012), 17–32
-
M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Math. Math. Phys., 52:4 (2012), 672–695
-
A. I. Sukhinov, A. E. Chistyakov, A. V. Shishenya, “Error estimation for the diffusion equation solution based on the schemes with weights”, Math. Models Comput. Simul., 6:3 (2014), 324–331
-
A. I. Sukhinov, A. E. Chistyakov, A. A. Semenyakina, A. V. Nikitina, “Chislennoe modelirovanie ekologicheskogo sostoyaniya Azovskogo morya s primeneniem skhem povyshennogo poryadka tochnosti na mnogoprotsessornoi vychislitelnoi sisteme”, Kompyuternye issledovaniya i modelirovanie, 8:1 (2016), 151–168
-
N. M. Kashchenko, S. A. Ishanov, S. V. Matsievsky, “Efficient algorithms of numerical simulation of middle-scale irregularities in the low-latitude ionosphere”, Math. Models Comput. Simul., 9:6 (2017), 742–748
-
R. V. Zhalnin, E. E. Peskova, O. A. Stadnichenko, V. F. Tishkin, “Modelirovanie techeniya mnogokomponentnogo reagiruyuschego gaza s ispolzovaniem algoritmov vysokogo poryadka tochnosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:4 (2017), 608–617
-
N. M. Kaschenko, S. A. Ishanov, S. V. Matsievskii, “Razvitie neustoichivosti Releya–Teilora v ekvatorialnoi ionosfere i geometriya nachalnoi neodnorodnosti”, Matem. modelirovanie, 30:9 (2018), 21–32
-
N. M. Kaschenko, S. A. Ishanov, S. V. Matsievskii, “Modelirovanie razvitiya ekvatorialnykh plazmennykh puzyrei iz plazmennykh oblakov”, Kompyuternye issledovaniya i modelirovanie, 11:3 (2019), 463–476
-
N. M. Kaschenko, S. A. Ishanov, L. V. Zinin, S. V. Matsievskii, “Chislennyi metod resheniya dvumernogo uravneniya perenosa pri modelirovanii ionosfery Zemli na osnove monotonizirovannoi Z-skhemy”, Kompyuternye issledovaniya i modelirovanie, 12:1 (2020), 43–58
-
V. F. Tishkin, V. A. Gasilov, N. V. Zmitrenko, P. A. Kuchugov, M. E. Ladonkina, Yu. A. Poveschenko, “Sovremennye metody matematicheskogo modelirovaniya razvitiya gidrodinamicheskikh neustoichivostei i turbulentnogo peremeshivaniya”, Matem. modelirovanie, 32:8 (2020), 57–90
-
N. M. Kaschenko, S. A. Ishanov, S. V. Matsievskii, “Chislennoe issledovanie inkrementa gradientno-dreifovoi neustoichivosti na frontakh ekvatorialnykh plazmennykh puzyrei”, Matem. modelirovanie, 32:11 (2020), 129–140
|
Number of views: |
This page: | 542 | Full text: | 216 | References: | 52 | First page: | 16 |
|