RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2010, Volume 22, Number 1, Pages 32–45 (Mi mm2924)  

This article is cited in 7 scientific papers (total in 7 papers)

Adaptive artificial viscosity for gas dynamics for the Euler variables in Cartesian coordinates

I. V. Popov, I. V. Fryazinov

Institute for Mathematical Modelling of RAS, Moscow

Abstract: It is considered a method of adaptive artificial viscosity (АAV2D-3D) of decision for two- and three-dimensional equations of gas dynamics for the Euler variables in the Cartesian coordinates system. This paper continues the works [1], [2]. The computational scheme is described in detail, and the results of test case are given.

Full text: PDF file (363 kB)
References: PDF file   HTML file

English version:
Mathematical Models and Computer Simulations, 2010, 2:4, 429–442

Bibliographic databases:

Received: 08.09.2008

Citation: I. V. Popov, I. V. Fryazinov, “Adaptive artificial viscosity for gas dynamics for the Euler variables in Cartesian coordinates”, Matem. Mod., 22:1 (2010), 32–45; Math. Models Comput. Simul., 2:4 (2010), 429–442

Citation in format AMSBIB
\Bibitem{PopFry10}
\by I.~V.~Popov, I.~V.~Fryazinov
\paper Adaptive artificial viscosity for gas dynamics for the Euler variables in Cartesian coordinates
\jour Matem. Mod.
\yr 2010
\vol 22
\issue 1
\pages 32--45
\mathnet{http://mi.mathnet.ru/mm2924}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2668032}
\zmath{https://zbmath.org/?q=an:05758708}
\transl
\jour Math. Models Comput. Simul.
\yr 2010
\vol 2
\issue 4
\pages 429--442
\crossref{https://doi.org/10.1134/S2070048210040034}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925944520}


Linking options:
  • http://mi.mathnet.ru/eng/mm2924
  • http://mi.mathnet.ru/eng/mm/v22/i1/p32

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. V. Popov, I. V. Fryazinov, “Calculations of bidimentional test problems by a method of adaptive artificial viscosity”, Math. Models Comput. Simul., 2:6 (2010), 724–732  mathnet  crossref
    2. I. V. Popov, I. V. Fryazinov, “Method adaptive artificial viscosity”, Math. Models Comput. Simul., 3:1 (2011), 18–24  mathnet  crossref  mathscinet
    3. I. V. Popov, I. V. Fryazinov, “About the new choice of adaptive artificial viscosity”, Math. Models Comput. Simul., 3:4 (2011), 411–418  mathnet  crossref  mathscinet
    4. I. V. Popov, I. V. Fryazinov, “Finite-difference method for computation of the 3-D gas dynamics equations with artificial viscosity”, Math. Models Comput. Simul., 3:5 (2011), 587–595  mathnet  crossref  mathscinet
    5. I. V. Popov, I. V. Fryazinov, “Method of adaptive artificial viscosity for the equations of gas dynamics on triangular and tetrahedral grids”, Math. Models Comput. Simul., 5:1 (2013), 50–62  mathnet  crossref  mathscinet  elib
    6. O. B. Bocharova, M. G. Lebedev, I. V. Popov, V. V. Sitnik, I. V. Fryazinov, “Shock wave reflection from the axis of symmetry in a nonuniform flow with the formation of a circulatory flow zone”, Math. Models Comput. Simul., 6:2 (2014), 142–154  mathnet  crossref  mathscinet
    7. I. V. Popov, I. V. Fryazinov, “Method of adaptive artificial viscosity for solving the Navier–Stokes equations”, Comput. Math. Math. Phys., 55:8 (2015), 1324–1329  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Математическое моделирование
    Number of views:
    This page:649
    Full text:238
    References:59
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020