RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2012, Volume 24, Number 3, Pages 113–136 (Mi mm3273)  

This article is cited in 2 scientific papers (total in 2 papers)

On the Craig method convergency for linear algebraic systems

N. N. Kalitkin, L. V. Kuzmina

Keldysh Institute of Applied Mathematics of Rus. Acad. Sci., Moscow

Abstract: The iterative Craig method permits to solve linear algebraic systems with nonsymmetric (and even rectangular) matrix. The simple form of this method was constracted. The convergention this method was inverstigated on tests. The comparison with the conjugated gradients method was fulfeeld. It occurred that round of errors for the Craig method decelerate essentially iterations convergence, but not prevent from high accuracy achievement (for well conditioned matrixes). The effective criterium is found for iterations truncation.

Keywords: linear algebraic systems, the Craig method, iterations convergency, round of errors.

Full text: PDF file (792 kB)
References: PDF file   HTML file

English version:
Mathematical Models and Computer Simulations, 2012, 4:5, 509–526

Bibliographic databases:

Received: 14.04.2011

Citation: N. N. Kalitkin, L. V. Kuzmina, “On the Craig method convergency for linear algebraic systems”, Matem. Mod., 24:3 (2012), 113–136; Math. Models Comput. Simul., 4:5 (2012), 509–526

Citation in format AMSBIB
\Bibitem{KalKuz12}
\by N.~N.~Kalitkin, L.~V.~Kuzmina
\paper On the Craig method convergency for linear algebraic systems
\jour Matem. Mod.
\yr 2012
\vol 24
\issue 3
\pages 113--136
\mathnet{http://mi.mathnet.ru/mm3273}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2977826}
\elib{http://elibrary.ru/item.asp?id=21276742}
\transl
\jour Math. Models Comput. Simul.
\yr 2012
\vol 4
\issue 5
\pages 509--526
\crossref{https://doi.org/10.1134/S2070048212050055}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928996289}


Linking options:
  • http://mi.mathnet.ru/eng/mm3273
  • http://mi.mathnet.ru/eng/mm/v24/i3/p113

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. N. Kalitkin, L. V. Kuzmina, “The one-step truncated gradient methods”, Math. Models Comput. Simul., 7:1 (2015), 13–23  mathnet  crossref
    2. A. A. Belov, N. N. Kalitkin, L. V. Kuzmina, “Comparison of highly stable forms of iterative conjugate directions methods”, Math. Models Comput. Simul., 8:2 (2016), 155–174  mathnet  crossref  mathscinet  elib
  • Математическое моделирование
    Number of views:
    This page:379
    Full text:155
    References:59
    First page:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020