RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matem. Mod., 2013, Volume 25, Number 3, Pages 89–104 (Mi mm3344)  

This article is cited in 11 scientific papers (total in 11 papers)

Simulation of wave responses from subvertical macrofracture systems using grid-characteristic method

M. V. Muratov, I. B. Petrov

Moscow Institute of Physics and Technologies (State University)

Abstract: The aim of this paper is formation and propagation of scattered waves analysis. These waves form the response of fracture patterns on seismograms. The initial pulse is a plane wavefront spreading into the medium. The periodic structure of scattered wave response from system (claster) of subvertical macrofractures is studying in this paper. Basing on numeric simulation the ways of this fracture patterns geometric characteristics estimation are concluded. The grid-characteristic method with triangular computational mesh is used in the paper. Boundary conditions on surfaces of fractures and on integration domain boundaries take into account the characteristic properties of the determining hyperbolic equations system. This numeric method lets make the numeric algorithms on the integration domain boundaries and the boundaries between different media the most correctly, take into account the physics of the problem. For this reason this method is the most appropriate for numeric solution of dynamic problems with pronounced wave character in heterogeneous media, in particular for analyzing problem of seismic waves interaction with fracture patterns.

Keywords: numerical simulation, seismic exploration, fracture patterns, hyperbolic equation systems, grid-characteristic method, non-structured triangular meshes.

Full text: PDF file (1315 kB)
References: PDF file   HTML file

English version:
Mathematical Models and Computer Simulations, 2013, 5:5, 479–491

Bibliographic databases:

UDC: 519.63
Received: 23.04.2012

Citation: M. V. Muratov, I. B. Petrov, “Simulation of wave responses from subvertical macrofracture systems using grid-characteristic method”, Matem. Mod., 25:3 (2013), 89–104; Math. Models Comput. Simul., 5:5 (2013), 479–491

Citation in format AMSBIB
\Bibitem{MurPet13}
\by M.~V.~Muratov, I.~B.~Petrov
\paper Simulation of wave responses from subvertical macrofracture systems using grid-characteristic method
\jour Matem. Mod.
\yr 2013
\vol 25
\issue 3
\pages 89--104
\mathnet{http://mi.mathnet.ru/mm3344}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3112321}
\transl
\jour Math. Models Comput. Simul.
\yr 2013
\vol 5
\issue 5
\pages 479--491
\crossref{https://doi.org/10.1134/S2070048213050098}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925969111}


Linking options:
  • http://mi.mathnet.ru/eng/mm3344
  • http://mi.mathnet.ru/eng/mm/v25/i3/p89

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, V. A. Miryaha, A. V. Sannikov, V. I. Golubev, “The monitoring state of a moving train using high performance systems and modern computational methods”, Math. Models Comput. Simul., 7:1 (2015), 51–61  mathnet  crossref
    2. V. A. Miryaha, A. V. Sannikov, I. B. Petrov, “Discontinuous Galerkin method for numerical simulation of dynamic processes in solids”, Math. Models Comput. Simul., 7:5 (2015), 446–455  mathnet  crossref  elib
    3. A. I. Sukhinov, D. S. Khachunts, A. E. Chistyakov, “A mathematical model of pollutant propagation in near-ground atmospheric layer of a coastal region and its software implementation”, Comput. Math. Math. Phys., 55:7 (2015), 1216–1231  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    4. Voroshchuk D.N. Miryaha V.A. Petrov I.B. Sannikov A.V., “Discontinuous Galerkin Method For Wave Propagation in Elastic Media With Inhomogeneous Inclusions”, Russ. J. Numer. Anal. Math. Model, 31:1 (2016), 41–50  crossref  mathscinet  zmath  isi  elib  scopus
    5. M. V. Muratov, I. B. Petrov, I. E. Kvasov, “Chislennoe reshenie zadach seismorazvedki v zonakh treschinovatykh rezervuarov”, Matem. modelirovanie, 28:7 (2016), 31–44  mathnet  elib
    6. A. I. Sukhinov, A. E. Chistyakov, A. A. Semenyakina, A. V. Nikitina, “Chislennoe modelirovanie ekologicheskogo sostoyaniya Azovskogo morya s primeneniem skhem povyshennogo poryadka tochnosti na mnogoprotsessornoi vychislitelnoi sisteme”, Kompyuternye issledovaniya i modelirovanie, 8:1 (2016), 151–168  mathnet  crossref
    7. A. Favorskaya, I. Petrov, V. Golubev, N. Khokhlov, “Numerical simulation of earthquakes impact on facilities by grid characteristic method”, Knowledge-Based and Intelligent Information & Engineering Systems, Procedia Computer Science, 112, eds. C. Zanni-Merk, C. Frydman, C. Toro, Y. Hicks, R. Howlett, L. Jain, Elsevier Science BV, 2017, 1206–1215  crossref  isi  scopus
    8. A. Favorskaya, I. Petrov, A. Grinevskiy, “Numerical simulation of fracturing in geological medium”, Knowledge-Based and Intelligent Information & Engineering Systems, Procedia Computer Science, 112, eds. C. Zanni-Merk, C. Frydman, C. Toro, Y. Hicks, R. Howlett, L. Jain, Elsevier Science BV, 2017, 1216–1224  crossref  isi  scopus
    9. V A. Favorskaya, M. S. Zhdanov, N. I. Khokhlov, I. B. Petrov, “Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method”, Geophys. Prospect., 66:8 (2018), 1485–1502  crossref  isi  scopus
    10. I. B. Petrov, M. V. Muratov, “Primenenie setochno-kharakteristicheskogo metoda v reshenii pryamykh zadach seismorazvedki treschinovatykh plastov (obzornaya statya)”, Matem. modelirovanie, 31:4 (2019), 33–56  mathnet  crossref  elib
    11. Petrov I.B. Muratov V M., “Mathematical Modeling of Spatial Wave Responses By Grid-Characteristic Method on Irregular Computational Meshes”, Lobachevskii J. Math., 40:4, SI (2019), 499–506  crossref  isi
  • Математическое моделирование
    Number of views:
    This page:268
    Full text:67
    References:43
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020